
webinar 5: the magnetic hyperfine interaction 
 
(automated transcription) 
 
This is the feedback webinar on the Magnetic Hyperfine Interaction, the second of our Physically 
Observable Hyperfine Interactions. This week there is no administrative information except for the 
fact that I noticed yesterday evening that the introduction page in the course site has not the 
proper content. So for the Magnetic Hyperfine Interaction it starts with the same introduction as 
for the monopole shift, which is obviously not right. I couldn't update it yet, but I will do so soon 
and hopefully this didn't bring any confusion among you. In technical terms this Magnetic 
Hyperfine Interaction is the dipole term in a multipole expansion, but not the multipole expansion 
of two charge distributions as we had with the monopole shift. No it's the multipole expansion of 
two current distributions, the currents that are inside the nuclei and the currents that are in the 
electron cloud. These two current distributions you can multipole expand them, the monopole 
term is zero, the dipole term is the first non-zero term and that's the Magnetic Hyperfine 
Interaction. And it's this dipole term that if you apply perturbation theory will give rise to these 
hyperfine split levels at the right hand side of the picture. Here it will be an interaction between 
two vector properties as we are in a dipole term, so we will have a vector associated to the 
electron cloud, that's the magnetic hyperfine field and a vector associated to the nucleus, that's 
the nuclear magnetic moment. We have discussed this in the course in two sections, two main 
sections, the Magnetic Hyperfine Interaction for free atoms and the Magnetic Hyperfine 
Interactions for crystals, for solids and the reason is that the mathematical description in both 
cases is a bit different. You can benefit from features of free atoms that can give rise to a shorter 
mathematical description and it's even particularly easy for those of you who have studied in 
detail spin-orbit coupling before because the formalism of spin-orbit coupling and the formalism 
for the Magnetic Hyperfine Interaction in free atoms is identical, very very similar. So therefore let 
me very quickly go through the reasoning of spin-orbit coupling once again and then duplicate that 
for the Magnetic Hyperfine Interaction. So in spin-orbit coupling we have one vector property that 
describes the orbit of the electron and that's the angular momentum vector of the electron orbit, 
here symbolized in a very classical way where the electron is on an orbit like a planet and the 
vector, the orbital angular momentum is a vector that is perpendicular to the plane of that orbit. 
So in a way the orientation of that angular momentum vector gives you some information about 
the orbit, you know the plane of the orbit. If the orbit would be in a different plane the angular 
momentum vector would be pointing in a different direction. That's one vector that plays a role, 
that orbital angular momentum vector. The second vector is the spin angular momentum vector of 
the electron and we can wonder how is that spin angular momentum vector oriented with respect 
to the orbital angular momentum vector? And this mutual orientation for atoms is given by the 
three Hund's rules. If you apply the three Hund's rules at the end you know how S is oriented with 
respect to L. And that is what gives rise to the fine structure levels. For different mutual 
orientations of S versus L you have different fine structure levels. Now we move to the hyperfine 
levels and ok, before doing so, indeed I asked you a question about this. Look at this picture, the 
picture was missing in the first few days of the week, there was a broken link and somebody 
reported it in the forum, since then it has been fixed. So this was the picture that some of you may 
not have seen and the question here was find the levels where the L and S are parallel and pointing 
in the same direction, in opposite directions or more perpendicular to each other. And the correct 
answer would be if J is maximal then L and S are added, you get maximal value so then they are 
pointing in the same direction. If the value of J is minimal, so in this case zero, then they are 
pointing in opposite directions because you have L minus S and the case in between, the half way 
between same direction and opposite direction is perpendicular. And now we move this reasoning 
towards the hyperfine levels where we don't have L-S coupling but now we study I-J coupling, I the 
spin of the nucleus and J the total angular momentum of the electron cloud, so the one that is 



made from L and S. And I will take here as an example an atom where the electron cloud is in a 
state that can be described by J equals 2, just to have a number. That would look on the very 
important picture number 1 something like this, we have somewhere a level in a particular fine 
structure and now we consider this hyperfine splitting and we look at the ground state and the 
lowest state in this diagram where J equals 2. And here we can wonder, can we understand that 
the electron cloud that is in state J equals 2, that that can produce a magnetic field at the position 
of the nucleus. And I write there hint, this J is made from an orbital and a spin part. Let me 
continue the classical reasoning, if the electron is in an orbit then it represents a current, a charge 
that orbits is a current and a current loop, there you know from classical electromagnetism that it 
generates a magnetic field. Also at the position of the nucleus there will be a magnetic field due to 
that current. That is the orbital contribution to the magnetic hyperfine field. Magnetic hyperfine 
field is the field generated by the electron cloud at the position of the nucleus and here we see 
that it has an orbital contribution and by the orbital motion of the electron there is a contribution 
to that hyperfine field. The electron has also a spin which can classically be represented by a bar 
magnet and even if the electron would not be moving, if it would be at rest, if that is somehow 
possible, then by the mere presence of that bar magnet there will also be a contribution to the 
magnetic field at the position of the nucleus. And that's the spin dipolar contribution to the 
hyperfine field. So that was about the J, the electron contribution, now the I, the nucleus, the 
nucleus has spin as well, so the nucleus is also a bar magnet and that nucleus, that bar magnet is 
in the hyperfine field, this orbital and spin hyperfine field at the position of the nucleus. What does 
a bar magnet or a magnetic moment in a magnetic field does? It tries to orient itself towards the 
position that is energetically most favourable and how is that described? In classical 
electromagnetism the interaction energy between a moment and a field is minus mu dot B, so it 
depends on the angle that the magnetic moment vector makes with the magnetic field vector. You 
could make a graph of this, if the moment and the field are parallel and point in the same 
direction, then due to that minus sign in the expression, the energy is lowest. So I have here on this 
vertical axis, switch on the pointer, on this vertical axis we have here the lowest possible value of 
the energy and here I show that same energy, but now on an energy axis versus this angle theta in 
degrees. So if you turn the magnetic moment, then the energy increases, perpendicular then it is 
half way, it increases even more and if the magnetic moment is anti-parallel to the field then you 
reach the maximal energy. Very classical, I could describe this as a spread of energy values, the 
black box gives the range of all energies that are covered by one possible orientation of moment 
versus field and in a classical situation all of these energies can be reached. Now I put this 
classical picture on my fine structure level, so I have a fine structure level in which the electron 
cloud is in a state J equals 2, we have seen this gives rise to a magnetic hyperfine field, now my 
nucleus, depending on how the nucleus is oriented with respect to the hyperfine field, you can get 
any of the energies in that black area, but we have here a quantum system and not a classical 
system, so not all of these energies are allowed, not all of these orientations are allowed. If my 
nucleus would have a spin 1, as an example, then instead of all possible orientations all possible 
angles theta, only 3 possible orientations are possible, corresponding to the 3 quantum numbers 
mI being minus 1, 0 or plus 1. I now see that I have written mJ there, I should update that. So out of 
the full black box with an infinite number of values, only 3 values are allowed and these are the 
hyperfine levels. Every hyperfine level corresponds to a particular orientation of the nucleus with 
respect to the magnetic hyperfine field generated by the electron cloud. So in exactly the same 
way as L and S give rise to a J in the spin-orbit coupling case, we have here an I and a J, the nuclear 
spin and the electron angular momentum, that give rise to a new quantum number f, which 
describes the relative orientation of the I versus J. And a different value of f means that you have a 
different of the allowed energy levels. So on an example where we have I 3 halves and J 3 halves, 
the possible values of f will be 0, 1, 2 and 3. In exactly the same way as you get all possible J values 
from L and S, you get all possible f values from I and J. You go from the minimal value, which is the 
absolute value of I minus J, that would be 0 here, to I plus J, 3 halves plus 3 halves is 3. So 0 and 3 
are the minimal and maximal values and then all integer of all steps of 1 in between are also 



allowed. So 0, 1, 2 and 3, 4 levels. If you look in detail at the energy spectrum of a free atom, where 
the electron cloud is in a state described by J 3 halves and where the nucleus has spin 3 halves, 
then there will be 4 possible mutual orientations of I versus J, so you will see these 4 different 
hyperfine levels. So on the confidence question I can explain how the coupling of angular 
momenta is related to magnetic hyperfine interactions in free atoms, that's basically the story I 
told, I repeated just now. A related question, I can explain what Landé's interval rule is and how it 
relates to the magnetic hyperfine interaction. Some of you may have seen Landé's interval rule in 
the context of spin-orbit coupling. It tells that the ratio between subsequent fine structure 
transitions, that this ratio is identical to J versus J minus 1 for each of these levels, because the 
formalism is the same, exactly the same ratio applies to the magnetic hyperfine structure, but 
then it will be F over F minus 1. A question where there is some tale of uncertainty, starting from 
the classical expression for the magnetic dipole energy, I can construct a Hamiltonian in a form for 
which I know the eigenvalues. What did I mean by that? The key point is starting from that classical 
expression, and I've just repeated what that classical expression is, minus mu dot B. You will 
remember the slide in the video that is shown here, where it was sketched how starting from that 
classical expression, now with operators, if you fill out the general descriptions of these operators, 
and then play the trick where you replace I dot J by this sum of squares, these are operators for 
which you do now the eigenvalues. These are squares of angular momenta operators, that is 
something where we know the eigenvalues. We do not know the eigenvalues for I dot J, but in this 
different formulation with the squares of angular momenta we do know them. So in this way we 
have a hyperfine Hamiltonian that has for every part of it known eigenvalues. So we can 
completely go to the finish and have quantitative expressions for the hyperfine levels in free 
atoms. And because we treat this as a perturbing Hamiltonian, we can get to these quantitative 
values via the formalism of perturbation theory, and the results, it will be degenerate first order 
perturbation theory, we will have a matrix, and if we diagonalise the matrix, the diagonal elements, 
these will give the position of the hyperfine levels like here. Now in order to get a little bit familiar 
with the calculations in that formalism, I ask you to calculate one of these matrix elements in that 
degenerate first order perturbation theory story, namely the 1,1 element for the perturbing 
Hamiltonian Hjj. And do that for a nucleus that has spin 3 halves and total angular momentum 3 
halves. So if you don't remember where it came from, this is the C11, this element here, which is a 
particular version of this expression. And I show you one of your answers to point to the fact that in 
this answer there is an h bar squared remaining. And that is why these simple exercises are 
helpful. By having to write it down, apparently some people hesitate, should there be an h bar 
squared or not. Look back to the derivation, indeed when we start from operators, and if we apply 
the operator on an angular momentum eigenstate, we get an h bar squared, that's this one here, 
but in the prefactor there was a division by h bar squared, so this cancels out and in the matrix 
element where we have already the eigenvalues and not the operators anymore, the h bar squared 
has gone. So in your C11 there should be no h bar squared. And these are a few answers that were 
correct, twice the same reasoning, twice the same answer, you find C11 is minus 11 over 2, so 
that's the correct answer, so that's this C here and that needs to be multiplied by minus one half 
times the hyperfine structure constant. So this, just to emphasize that once again, these values, 
these C values, these are the matrix elements in a first order perturbation treatment, degenerate. 
So well, okay let me repeat also that part, without the perturbing Hamiltonian, without the 
magnetic hyperfine interaction, it does not matter what is the mutual orientation of I and J, the 
magnetic moment of the nucleus can point in any direction that will have no effect on the total 
energy of the system. So I and J, or the mutual orientation of I and J, which means F, F does not 
matter for the total energy, so the energy is degenerate with respect to F, that is why we will end up 
in degenerate perturbation theory. Now we switch on the magnetic hyperfine interaction, we 
introduce the perturbing Hamiltonian and we have to evaluate the old eigenstates, these different 
F states in the perturbing Hamiltonian, so we have to make the matrix of all possibilities, all 
possible states F from, okay in this case from zero to three, because it was still with the example I 
three halves, J three halves, so we have a four by four matrix and we find already by construction 



that this will be a diagonal matrix here, so we will be lucky, there is no diagonalization needed, no 
explicit diagonalization needed, we have on the diagonal the values that directly give the 
contribution to the hyperfine splitting. And there was a specific question on this one, that's why I 
elaborated a bit on it, somebody wondered is that matrix in the first order perturbation always a 
four by four matrix or was it specific for our example where we have four values of F, so yes 
definitely this was specific for the example, if you would have seventeen values of F then that 
would be a seventeen by seventeen matrix, it was just to be able to write a matrix there, it's not 
meant for the general case. Okay let me see whether there is a question on the chat, is the Fermi 
contact contribution not a part of the J contribution, yes it is, but in my classical story that I told so 
far, the Fermi contact contribution has no place in the classical story, we will come back to it at 
the end of this webinar when we will be dealing with the overlap contribution, then every piece of 
the puzzle in the framework will be put in the proper place. And then another question, if you took 
the state F equals one, you would have, I'm not sure whether I understand that question 
completely, so I will just read it aloud but it's difficult with a bit of symbols, if you took the state F 
equals one, you would have that one is three halves plus J, so J is, okay, so if you would take, we 
have our four states for F from zero to three, I told that the zero is I minus J, absolute value, the 
three is I plus J, no need for an absolute value because that will always be positive, and then 
integer steps in between, or steps of one in between, and the question here is, let's pick one of 
these intermediate values and let's figure out which I and J I need to find that one, so then you find 
some impossible value of J, so the point is you cannot write that as simply for these intermediate 
values, you have very short expressions for the two extremes, if you would want to express the 
intermediate values, that is possible, if you have seen a course on the quantum treatment for 
angular momenta then something as Clebsch-Gordan coefficients might sound familiar to you, 
you would need an expression with Clebsch-Gordan coefficients for these intermediate ones, the 
simple algebra will not work there, and that reminds me to another comment that one of you wrote 
in one of the tasks, where somebody gave a very detailed algebraic mathematical discussion of 
the role of angular momenta, and was complaining that these classical pictures were a bit too 
simple and were confusing, and that's indeed a choice one has to make here, either you describe 
this in a conceptual way, where there is still some relation to what you can classically imagine, 
and that's the path I have taken for this course, I try to be correct, but pointing nevertheless to 
similarities with the classical case, or you could take the alternative approach and go fully in the 
quantum formalism for angular momentum, where things get very algebraic and you have no 
visual representations anymore, and you can just believe your final numbers, that's of course the 
most correct way, but that would require a different type of course, then we would need to spend 
many hours on that formalism first, and that's not the goal, we want to have reasonably correct 
mental pictures of hyperfine interactions, so no Clebsch-Gordan coefficients here. The next task 
was a situation where we have a nucleus with nuclear spin I1 that is known, nuclear magnetic 
moment mu1 that is known, and you have somehow the possibility to measure the hyperfine 
splitting in a free atom of a system where that nucleus is contained. And now you get a different 
isotope of the same element, with again a nuclear spin I2 that you know, but a magnetic moment 
mu2 that you do not know. With the tools you have at hand, how would you proceed to determine 
experimentally that magnetic moment mu2? Many of you have described a correct reasoning, so I 
will go through one reasoning step by step. So I have written at the right-hand side the two key 
expressions, the hyperfine structure constant for the first system, the first isotope A1, is the first 
magnetic moment times the hyperfine field in that system divided by the nuclear spin and the 
electron angular momentum, and the same for the second system. So in our first system we 
measure this hyperfine structure constant, we measure the difference between two hyperfine 
structure levels basically. Then we see that this depends on an expression where we know some 
things, we know the nuclear magnetic moment of the first isotope, so we know the mu1, we know 
the I1, what we don't know is the value for the hyperfine field and the state of the electron cloud of 
the atom in which that nucleus is. So mu1 over I1 we do know, B1 over J1 we do not know. Then 
we, okay sorry, but yeah, no, I should say that more precisely, we do know the ratio B1 over J1 



because we can get from this expression, but we do not know B1 and J1 individually. Then we 
move to the second isotope where we can write the same expression, but because we have now 
the same atom where only the nucleus is replaced by a different isotope, that means everything, 
basically everything remains the same apart from the hyperfine structure. We have a nucleus with 
the same charge, it's the same isotope, so up to the magnetic moment of the nucleus, the 
hyperfine term, up to that point everything is the same. So if we have the same system, the same 
nucleus, the same atom, the hyperfine field at that nucleus should also be the same. So B1 is the 
same as in the previous case and J1, the state of the electron cloud, is also the same. So that ratio 
B1 over J1 we can just use it in our second expression. We have determined it from the first 
expression, we put it in the second expression and then we measure again the hyperfine splitting, 
the A2 now, and because we know the spin of that second nucleus that was given, then the only 
unknown is the magnetic moment. This is a kind of reasoning that is often used in the practical 
use of hyperfine interactions. You have a system where you know everything about the nucleus 
and then you measure a similar system where you go to a different isotope where some things are 
unknown and by comparing the measurements in the two systems you can find out properties of 
the unknown nucleus. And that's a very important message. So let that sink in how strange and 
useful this is, because what we have done here is two measurements on energy levels of atoms. 
We look at the total energy structure of an atom, we measure it with very high resolutions such 
that we are able to resolve the hyperfine levels, we measure these hyperfine levels in two different 
atoms that contain a nucleus of two different isotopes and the result of these measurements is 
that we learn what is the magnetic moment of an unknown isotope. So we have measured a 
nuclear property by doing two atomic measurements. That's a way how to get to nuclear 
information. And you don't need nuclear physics so to say, you don't have to measure directly on 
the nucleus, you measure on the full system on the atom and still you get the nuclear property. 
That's a very useful application of hyperfine interactions. Okay, with this we finish the topic for free 
atoms. Let me go back to the chat, nothing new so far. And we continue with the magnetic 
hyperfine interaction in solids, in crystals. And here I asked you for three different systems, a 
particular isotope of cadmium, a free electron and a free neutron to determine with the known 
information of these systems to determine the g-factor. That sounds like a silly exercise. I think two 
or three even commented that this was not a particularly useful exercise. I will try to demonstrate 
why it is useful. And the reason is, well this is one of your answers. Somebody says you start from 
the formula that is given there at the top in purple, this expression, and then everything you have to 
do is just for the three cases fill out the numbers and there you are. Now you see in this answer it is 
described how to do that, but there are no final values. And I would really recommend to do it with 
the numbers that were given to get to the final values because that is where you will see whether 
you understand this expression or not. The devil is in the details here. Let's look at another answer 
where they start from the same expression. Here they do get numerical values, but these are not 
always right. And the reason is that expression where you start from. Well, I think I know where you 
got it. The people who started from that particular expression, they probably looked at this slide, 
where you have a relation between the nuclear magnetic moment operator and the nuclear 
angular momentum operator. And the proportionality factor between these two, that's this 
expression here. However, we don't work with operators if we look at experimental values of spins 
and magnetic moments. We work with their measured values. So first we have to wonder how 
does this relation look like between the measured properties. And, well, let's try to convert that. 
You have seen this slide as well. And this expression is repeated here or here. Well, how can we 
get the experimental value? The convention is you first go to the z-component. So you take the z-
component of the magnetic moment operator, the z-component of the angular momentum 
operator. And now you evaluate these z-components in a state where the m-value is maximal. So 
the z evaluated in a state with maximal m, so where m equals i, that is the experimental value. This 
is the magnetic moment that you measure. And if I evaluate this expression, because we know the 
eigenvalues of Iz, you get this. So the experimental value mu is the g-factor times the nuclear 
magneton times I. And if I want to have the g-factor out of this, so that's mu over mu n times I, or if 



you do this for a situation where no nuclei are involved, where it is about electron properties, then 
you don't have the nuclear magneton but the Bohr magneton. The expression is the same. So the 
expression we have to use, if we use tabulated experimental values, is this one here. And you see 
that this looks a bit different from the one between operators. For instance, this h-bar is not there. 
If you have an h-bar in your expression, then you're already sure that you made this mistake here. 
Also, if we have nuclear moments tabulated in nuclear magnetons, so often the tables will tell you 
the nuclear moment is that many times the nuclear magneton, then this number here is effectively 
some number times the nuclear magneton. And because you divide here by the nuclear 
magneton, well, these two disappear. And what is left is the nuclear magnetic moment in units of 
nuclear magneton, so that's the value you have in the tabulation, divided by the spin. So a very 
simple expression. If you work with tabulated values, it's the tabulated nuclear magnetic moment 
divided by the spin. That's the g-factor. And so if you apply this to this example for 111 cadmium, 
you get these numbers. So from this you can immediately see whether you got this right or not. 
And well, I noticed there was somebody who explicitly wrote, look, I have this expression, you see 
here the h-bar appearing, so that was wrong. But the point here is now, I do not know how to 
convert the units, because mu is given in nuclear magnetons in the database. Well, that's exactly 
why this, so 0.766 times the nuclear magneton, and here divided by the nuclear magneton, so this 
nuclear magneton disappears from the expression, the h-bar was there not as well, and you have 
just the tabulated value divided by the spin. And for the other cases, it's even simpler. So in the 
case of the electron, there you have the Bohr magneton. What is the electron magnetic moment? 
That's one Bohr magneton, that's how the Bohr magneton is defined. So in units of the Bohr 
magneton, in units of the Bohr magneton, the electron magnetic moment is 1 divided by the spin, 
which is 1.5, so 1 over 1.5, that's 2, so the g-factor for the free electron is 2, which is what you find 
here, and a similar reasoning for the neutron. So, I know, an exercise that may look dull, but it's 
important that you see the difference between working with operators and working with 
experimental values. And if you read a paper, if you want to interpret results in a paper, you will see 
these reported experimental values, and if you then take the operator expression to process these 
values, it will lead you nowhere. So I think this is maybe a bit dull, but still relevant. Yeah, this h-
bar, okay. And questions in the chat. Does the Bohr magneton work for muons? Yes, muons are 
particles that are not nuclear, so with muons it's the Bohr magneton that is used. Aha, and okay, 
so you will have been the one who wrote that example, the nm is nuclear magneton, not 
nanometers. Okay, so that was the confusion. Okay, got it. Then, a kind of thought experiment. You 
have a carousel, a child, a Bohr magnet, an electrically charged ball, and a magnetometer, and 
you have to use these ingredients to recreate as many contributions to the magnetic hyperfine 
field as possible. Again, an exercise that some people find very interesting, and other people find, 
well, below their level. But it's meant to think about the actual meaning, the physical meaning of 
these different contributions. And I find it easier to think about this in a totally innocent context, 
than in a physics context, where you are sometimes used to formula about which you do not think 
anymore. So, by replacing this outside the physics context, you can look at it with more fresh eyes. 
That is the purpose of this exercise. And I show here a combination of two of your answers that 
shows what you got and where the problem is. So, yes, you can put the magnetometer in the 
middle of the carousel, at the place where the nucleus would be. So the magnetometer will 
measure the magnetic field at that position. So that will be the measurement of the hyperfine 
field. The child on the carousel with the charged ball, the child is the electron. If that child has the 
magnet in the hand, and the carousel does not move, so the child is at rest, then that magnet will 
produce a magnetic field in its environment, and that will reach up to the magnetometer. And the 
magnetometer will register, there is a magnetic field here, from the bar magnet that the child 
holds. So that's the spin contribution to the magnetic hyperfine field. If the child also has this 
electrically charged ball, and the carousel does not move, then that will have no effect on the 
magnetometer. But if the carousel starts turning around, so the charged ball is on a circular orbit, 
it is a current, then that current will create a magnetic field, and the magnetometer will see that. 
That's the orbital contribution to the magnetic hyperfine field. So many of you agree on that. The 



blue part, that is where it gets difficult. I do not know how to simulate the contribution of the Fermi 
contact term. As in this case, the bar magnet would have to be inside the magnetometer. Okay, 
well, let's compare that to somebody who tried to simulate that. So in this answer you have in the 
different colors the three different aspects about which we agree. And then the last one, which is 
attempted to be the representation of the Fermi contact contribution. Let's assume that the child 
has again that charged ball, the carousel is spinning, and the child is wandering wherever he or 
she wants on the carousel, even inside the nucleus while holding that charged ball. So, I don't 
completely agree with it, but okay, you cannot now, because this thought experiment is meant to 
point out what is special about a Fermi contact contribution. You do have a classical counterpart 
for the orbital and the spin contribution. Do we have a classical counterpart for the contact term? 
Not really, at least not physically. Mathematically, how could we have a Fermi contact term 
mathematically in a classical context? It would happen when we would have, yeah, when, I'm 
thinking how to formulate that, which is difficult because there is no classical counterpart. We 
would need to have two magnetic monopoles, a magnetic south pole and a magnetic north pole. 
And inside that monopole there should be a current. Now, that's not possible because we cannot 
separate north and south poles. We have only magnetic dipoles, we do not have magnetic 
monopoles. But in the context of the nucleus, where this spin up and spin down, so where there is 
a kind of spin current at exactly one point at r equals zero. So, in our formalism, in the Fermi 
contact term, we have, we need the spin up versus spin down difference at r equals zero at one 
mathematical point. And at that same mathematical point, we have our nucleus. Well, the point is 
infinite in dimensions, so it is somehow inside this north and south pole of the nucleus. So this is a 
very peculiar situation where we can get inside the bar magnet, in between the north and the 
south pole. Which is, well, a kind of visual explanation why we can have a thing as the Fermi 
contact term in the nuclear context, but not in the classical context. Not because it is 
fundamentally forbidden in the classical context, but we have no way to get in between the north 
and the south pole of classical objects. In this nuclear situation, we can do that. That brings us to 
the last part, the overlap contribution. And here I asked you to imagine a perfectly spherical 
nucleus with a non-zero radius. And somehow the electron cloud is such that all electron charges 
stay outside that nucleus. Whether that is really possible or not, we don't care. We just assume 
that we have that situation. Will there be energy corrections due to the finite size of the nucleus? 
Now, we are still technically struggling in the website with these post-first forums. So now you can, 
for the time being, you see all the posts. And I know you will read a few of the answers before you 
post your own one. And so therefore there is sometimes little doubt about what the correct answer 
is. Now, in the years when this post-first forum was properly working, where everybody had to post 
an answer without being influenced by the others, then very often the answer is no. In this 
situation, there is no overlap of the two current distributions, so there will not be such an overlap 
contribution. Now, well, this year the typical answer looks like this. I have two examples of them. 
So the Bohr Weisskopf effect, it does not require electrons to be in the nucleus. Only a magnetic 
field created by the electron cloud should be in the nucleus. And that is perfectly possible without 
the electrons entering. So at this stage, yes, there can be an overlap contribution. There can be a 
Bohr Weisskopf contribution. This particular answer continues. Since the nucleus in this example 
is a perfect sphere, I imagine there would be no hyperfine anomaly term. Because the energy ratio 
would be the same as the nucleus in an external uniform field. And that's an interesting reasoning 
because that shows a little misunderstanding. We can have a hyperfine anomaly or an overlap 
contribution due to the fact that the field is non-uniform. But also because the magnetization in 
the nucleus is not uniform. So even if we have a homogeneous field, well, no, no, let me say this in 
the other way. Both aspects matter. We need a field that is not uniform, but also the magnetization 
distribution matters. Why will two different isotopes have a different hyperfine interaction? 
Because that hyperfine field that is not uniform interacts with the magnetization that is not 
uniformly distributed. And it's not because we have here in this hypothetical example a perfect 
sphere that the nuclear magnetization cannot be not uniformly distributed within that sphere. So 
you could have a hyperfine anomaly even with a nucleus that is perfectly spherical. So in this 



answer, this is formulated in a more correct way. So yes, in our hypothetical example, there will 
still be a contribution Bohr-Weisskopf effect. The Fermi contact contribution is zero, since there 
are no electrons inside the nucleus. But the Bohr-Weisskopf effect, that will be present because 
the magnetic field generated by the electron cloud is still present within the nucleus. And you will 
be sensitive to the different ways in which the magnetic moment of the nucleus is distributed over 
the nuclear volume. So I've repeated there at the bottom of the slide the two aspects that play a 
role. You have a nuclear moment that is not distributed evenly over space, where space is the 
nuclear volume. And you have a hyperfine field, a magnetic field by in this case only the spin and 
orbital, that should be the orbital and the spin dipolar contributions. You have a magnetic 
hyperfine field that is not constant over the nuclear volume. And by the interplay of these two 
effects, you are, the hyperfine interaction is sensitive to the distribution of the nuclear moment. So 
this is another illustration how hyperfine interactions can be useful for nuclear physics. Because if 
you measure so precisely that you can detect the hyperfine anomaly, then you have an 
experimental access to how nuclear moments are distributed over the nuclear volume. And that 
can be compared with predictions from nuclear theory. One model for the nucleus may predict a 
different distribution than another model for the nucleus. And by comparing this with 
experiments, you can find out which of the two models is the more correct one. There was a 
question here, somebody asked, you say that this Fermi contact contribution is a first order 
correction for a dipole moment, but what about these other two, the orbital and the spin 
contribution, are they also part of the zeroth order correction? So I see a lot of confusions in this 
question. And the answer to that question is in the thing we started from. We are discussing here 
the dipole term in a multiple expansion of a current-current interaction where the monopole term 
was zero, the dipole term is the leading one. And in this slide in the video, it was said that in the 
pure multiple expansion, so without overlap corrections, in the pure multiple expansion, your 
dipole term looks like this and contains only the orbital and spin contributions to the hyperfine 
field. So if you have a hypothetical atom where the nucleus is a point, is really a point, but a point 
that has a magnetic moment, well then you will have as leading term in the multiple expansion 
only this. However, if you allow the two current distributions, the one from the nucleus and the one 
from the electron cloud to overlap, so if the condition are smaller than, always smaller than, are 
larger than, if that is not fulfilled for this current-current multiple expansion, then you will find two 
corrections. Two now, so your entire series, what we saw last time with the monopole shift, in the 
first-order monopole shift, the second-order monopole shift, well here you will have the first-order 
dipole shift. The Fermi contact contribution is actually a first-order dipole shift and higher order 
terms. And well, these consist now of two parts. You have this Fermi contact contribution, that 
depends only on what happens at the position r equals zero, so at really the center of charge of the 
nucleus at one mathematical point. So even if the nucleus really becomes a point, but a point with 
a magnetic moment, this part of the overlap contribution will not vanish. And then there is the field 
correction due to the Bohr Weisskopf effect, that requires the nucleus to have a certain volume, 
because you need to have the magnetic moment distributed over a volume in a particular way. So 
if you have two isotopes with two different ways of distributing that magnetic moment, then you 
will have two different Bohr Weisskopf fields. So this is how everything fits together. If I go back to 
this question, what is an overlap correction? What is a proper multipole term? So orbital and spin 
contributions are part of the normal dipole term, no overlap correction. And Fermi contact and 
Bohr Weisskopf, these are overlap corrections. And they are slightly different from the charge-
charge case, because here we have a contribution that would not vanish if the nucleus has a zero 
radius. If you think about the monopole shift, charge-charge interaction, the monopole shift was 
dependent on the mean square radius of the nucleus, so it would vanish if you have a zero radius. 
So the monopole shift is basically at the same level as the Bohr Weisskopf effect. The special new 
thing for the current-current interaction is that you have this overlap contribution that does not 
vanish with a zero radius. And as you saw in the numerical examples in the video, it's often this 
contribution that is even dominant. So if you measure a magnetic hyperfine field, in many cases it 
will be overwhelmed by this term here. So the first order dipole shift can be a large one. And the 



last task was to ponder these four statements and to indicate the ones that are meaningful 
statements. There were some interesting answers on that. Somebody indicated only this one, the 
hyperfine anomaly for the isotope gold-197 is 2%. And why was that taken? Well, different 
arguments to exclude the other ones. And the hyperfine anomaly for two different elements, like 
here, that is not defined. In the third case, I don't think you can have a hyperfine anomaly for an 
entire element. So if you say hyperfine anomaly just for platinum, that is not a meaningful 
statement either. And both these arguments are correct ones. The argument that is not correct, 
which is used to eliminate the second line, I don't think you can compare two different isotopes 
because the Bohr-Weisskopf effect has to do with the distribution of magnetic moments in the 
same nuclei. And that's a misunderstanding, because one nucleus will always have the same 
distribution of magnetic moments. You cannot say here you have one nucleus with one 
distribution of magnetic moments and now you take exactly the same nucleus that has a different 
distribution of magnetic moments. No, the identical nuclei are identical. But what you can say is 
you take one isotope with a distribution of magnetic moments and now you take a different 
isotope of the same element, so some neutrons are added or subtracted and that will have in 
general a different magnetic moment that is distributed differently. Another answer where two 
boxes were ticked. You can only talk about the hyperfine anomaly when comparing two different 
nuclei, because you compare the ratio of energies within identical externally applied magnetic 
fields and identical hyperfine fields. And the word that is wrong here is nuclei, so in the correct 
version it will be isotopes. And the second thing that is wrong here, the idea of comparing with a 
naked nucleus without any electrons inside an uniformly applied magnetic field, that was not 
meant as an actual measurement. That is a hypothetical step in the reasoning to point out why the 
hyperfine anomaly exists. But if you measure it in practice, you will not measure a naked nucleus 
in a uniformly applied field, you will always measure a particular isotope in a hyperfine field and 
compare the differences. I think the same confusion was also present here. The correct answer is 
to tick only the second line, that's the only line that is meaningful and the green argument there is 
correct. The hyperfine anomaly is the correction to the energy ratio when you compare two 
different isotopes. And then what was wrong in this answer had ticked also the first one, for the 
same reason as I mentioned on the previous slide, because you can compare a particular isotope 
with that same isotope without electrons in a uniform field. Now in principle you could do that, but 
in practice this is not done, this is not easily measurable. Then somebody ticked answer number 
one, for a reason that I don't completely understand right now. So it would be easier to specify the 
hyperfine anomaly of one specific isotope, probably because you are also thinking compare that 
case to the uniform external field, of which I just said this is in practice not doable. So the only 
correct one was this second line, and we have always specified a hyperfine anomaly between two 
different isotopes. If you see in a publication a hyperfine anomaly mentioned, then it is between 
two isotopes. The word hyperfine anomaly compares two isotopes. Okay, with this I've reached 
the end. Let me look at the chat. Does this connect with our toy model of a nucleus as a 
dumbbell? And I assume that this is about, that the question refers to the picture with the 
multipole expansion of the current-current distribution. So good that you asked this, and it allows 
me to emphasize that the toy model is explicitly for the charge-charge interaction. In the toy model 
you have two static charges, the electrons, and a dumbbell that can rotate and that contains 
charges for the nucleus, but we consider only the Coulomb interaction between these charges. 
There is no current involved. So the toy model is not applicable to the current-current interaction. 
Let me see if I would think here on the spot, would it be possible to construct a similar toy model 
for the current-current interaction? Then you would probably, maybe a variant of that double ring 
system that we discussed before, but now a double ring that has a current, that carries a current, 
and the nucleus, the dumbbell, would then not be a dumbbell, but a ring as well. And then you can 
classically calculate how the ring, the nuclear ring, which is represented by a magnetic moment, 
interacts with the magnetic field generated by these two current rings for the electrons, and then 
try to make a multipole expansion out of that. Yeah, which will not be easy mathematically 
because the multipole expansion for the current-current interaction contains vectors, or contains 



a vector potential compared to the scalar potential of the static charged-charged interaction. It 
will be more involved, but I'm sure that technically it can be done. That would be a kind of 
elaborate project, if somebody wants to play with that, feel free to go ahead, that would be 
interesting, but not a simple task. Okay, I will wait for one more minute to see if there are 
additional questions on the chat. That does not seem to be the case, so I will stop here. And we'll 
see each other again next week for the electric field gradient, the quadrupole interaction. Bye-bye!   


