
11308 Phys. Chem. Chem. Phys., 2012, 14, 11308–11317 This journal is c the Owner Societies 2012

Cite this: Phys. Chem. Chem. Phys., 2012, 14, 11308–11317

Classical toy models for the monopole shift and the quadrupole shift
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The penetration of s- and p1/2-electrons into the atomic nucleus leads to a variety of observable

effects. The presence of s-electrons inside the nucleus gives rise to the isotope shift in atomic

spectroscopy, and to the isomer shift in Mössbauer spectroscopy. Both well-known phenomena

are manifestations of the more general monopole shift. In a recent paper (Koch et al., Phys. Rev. A,

2010, 81, 032507), we discussed the existence of the formally analogous quadrupole shift: a tensor

correction to the electric quadrupole interaction due to the penetration of relativistic p1/2-electrons

into the nucleus. The quadrupole shift is predicted to be observable by high-accuracy molecular

spectroscopy on a set of 4 molecules (the quadrupole anomaly). The simple physics behind all

these related phenomena is easily obscured by an elaborate mathematical formalism that is

required for their derivation: a multipole expansion in combination with perturbation theory,

invoking quantum physics and ideally relativity. In the present paper, we take a totally different

approach. We consider three classical ‘toy models’ that can be solved by elementary calculus, and

that nevertheless contain all essential physics of the monopole and quadrupole shifts. We hope

that this intuitive (yet exact) analysis will increase the understanding about multipole shift

phenomena in a broader community.

1 Introduction

The penetration of electrons into the volume of the nucleus

leads to a variety of observable effects. Best known are the ones

that are connected to the penetration of s-electrons into the

nucleus: the isotope shift in atomic spectroscopy, and the

isomer shift in Mössbauer spectroscopy. It is common practice

to discuss these effects in terms of a multipole expansion in

combination with perturbation theory, where s-electrons inside

the nucleus manifest themselves mainly by the leading term in

the ‘‘near-field’’ corrections. Albeit being mathematically

convenient and quantitatively nearly exact for all common

purposes, such a discussion obscures the simple physics that is

behind. This is even more true when it comes to the penetration

of relativistic p1/2-electrons into the nucleus: as this leads to a

tensor correction (rank 2) rather than to a scalar correction, an

intuitive understanding of the physics is even more remote. The

consequences of p1/2-penetration were pointed out for the first

time 40 years ago,1 but have only recently been discussed in

detail.2–6 The size of the effect is very small, and experimental

observation – predicted to be possible under the form of a

so-called ‘‘quadrupole anomaly’’6 – is still being attempted for.

The aim of the present work is to highlight the physics

behind both s- and p1/2-penetration, without resorting to a

heavy mathematical formalism nor to quantum physics. We

will discuss three ‘toy models’: configurations of positive and

negative classical charges that are so simple that their inter-

action energy can be calculated exactly, using no math that

goes beyond the level of an introductory course in classical

electrostatics. The properties of these models are sufficient to

demonstrate the essential physics of the isotope shift, isomer

shift, quadrupole shift and quadrupole anomaly (Sections 2–5).

The target audience for this analysis are in the first place

scientists from the molecular spectroscopy community (who

have the tools for observing the new quadrupole anomaly), as

well as scientists from the atomic spectroscopy, Mössbauer

and hyperfine communities (who have a tradition on mono-

pole shift phenomena). It is our hope that such an alternative

and intuitive approach to these properties will increase the

general understanding about them in a broader community.

2 Toy models: tm0 and tmA

2.1 A toy nucleus

Throughout this paper, we will use the charge distribution that

is shown in Fig. 1(a) as a classical analog for a nucleus. It

consists of two positive point charges +e, connected by a rigid

rod of length 2l. This ‘nucleus’ is fixed with its center of charge

(the middle of the rod) at the origin of an XYZ axis system,

and can freely rotate about this fixed point. The angles y and f
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(see Fig. 1(a)) define the absolute orientation of the nucleus

in space.

2.2 Electrons outside the nucleus: tm0

We put the toy nucleus into a given negative charge distribu-

tion, which consists of two negative point charges �e that are

fixed at a distance d along the positive and negative Z-axis.

The combination of this particular negative charge distribu-

tion (‘the electron cloud’) and the toy nucleus, we call toy

model 0 (tm0). It is drawn in Fig. 1(b). What distinguishes tm0

from the other two toy models, which will be discussed later, is

that for any orientation of the nucleus, there will never be

negative (electron) charges inside the nuclear volume.

The key property which we want to determine for tm0 and any

of the later toy models, is the electrostatic interaction energy

between the ‘nucleus’ and the ‘electrons’, as a function of the

orientation of the nucleus: E0(y,f). It follows readily from

symmetry considerations that this energy for tm0 depends only

on y: E0(y) (the distance between the positive and negative point

charges does not change upon rotating the nucleus while keeping

the inclination with respect to the Z-axis fixed).

Straightforward application of Coulomb’s law leads to the

following expression (l o d is assumed):

E0ðyÞ ¼ � 2C
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

‘2 sin2 yþ ðd � ‘ cos yÞ2
q

0
B@

þ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
‘2 sin2 yþ ðd þ ‘ cos yÞ2

q
1
CA: ð1Þ

The positive constant C will appear many times hereafter, and

has the value C= e2/(4pe0). It is more instructive to examine a

graphical representation of eqn (1) (Fig. 2): the interaction

energy is always negative, indicating that the system is bound.

E0(y) is the energy that is required to translate the nucleus to

an infinite distance from the electrons. The lowest energy state

of the system is obtained when the nucleus lies parallel to the

Z-axis (ymin = 01 or ymin = 1801). The energy is maximal for

the nucleus lying in the XY-plane (ymax = 901). Depending on

the orientation of the nucleus, any energy between these two

extrema can be reached. This distinguishes this classical case

from the quantum case, where only discrete orientations and

therefore only discrete energies are allowed.

We will characterize the behaviour expressed by eqn (1) by

two numbers: the average interaction energy Eav and the

energy range DE, the latter being a measure of the curvature

of E(y):

Etm0
av ¼ 1

p

Zp
0

E0ðyÞdy ð2Þ

Etm0
av ¼ � 4C

dp

K
�4‘

d

1�‘
dð Þ2

� �
1� ‘

d

0
BB@

1
CCAþ

K
4‘
d

1þ‘
dð Þ2

� �
1þ ‘

d

0
BB@

1
CCA

2
664

3
775 ð3Þ

Etm0
av � � 4C

d
1þ 1

4

‘

d

� �2
" #

ð‘ � dÞ ð4Þ

DEtm0 = E0(ymax) � E0(ymin) (5)

Fig. 1 The toy models that are discussed in this work: (a) the model

for the toy nucleus: a nuclear dumb-bell consisting of two positive

point charges connected by a rigid rod. (b) tm0: the nuclear dumb-bell

in the field of two fixed point charges, without electron penetration

into the nucleus. (c) tmA: same as tm0, but now with a spherical

electron distribution inside the nuclear volume. (d) tmB: same as tm0,

but now with a non-spherical electron distribution inside the nuclear

volume, i.e. two point charges.

Fig. 2 Full lines: total energy for the three toy models, as a function

of the orientation of the nucleus. Dashed lines: average energy. In

order to exaggerate and emphasize the differences, the graphs are

made with the values e
e
¼ 0:005, ‘

d
¼ 0:1 and n = 2.
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DEtm0 ¼ �2C
2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

d2 þ ‘2
p � 1

d � ‘
� 1

d þ ‘

� �
ð6Þ

DEtm0 � 2C

d

‘

d

� �2

ð‘ � dÞ: ð7Þ

The derivation of Eav is elaborated upon in the Appendix. K(x)

is the complete elliptic integral of the first kind, a special

function that can be found either by tabulations or by

mathematical software. ymax (ymin) is the angle for which E0

reaches its maximal (minimal) value. The approximate expres-

sions (eqn (4) and (7)) are series expansions in the small term

l/d, up to the quadratic term. They are valid when l{ d,

which is a realistic approximation in the case of an atom (see

also Table 1). Eqn (4) and (7) clearly express the influence of

the shape of the nucleus on the energy: for a point nucleus

(l = 0), the energy E0 does not depend on y at all. It adopts

the constant value Eav = �4C/d, and the curvature DE is zero.

With a dumb-bell type of nucleus (l 4 0), the average energy

becomes more negative than �4C/d, and the curvature increases.

Both the lowering of the average value and the increase of the

curvature depend quadratically on l/d, not linearly.

2.3 Electrons inside the nucleus: tmA

The second toy model that will be discussed, is called tmA

(Fig. 1(c)). It is identical to tm0, except for the fact that in

addition to the two negative point charges, it has an extra

spherical homogeneous charge distribution with total charge

�e centered at the origin.y This sphere lies entirely inside the

volume covered by the nucleus. The charge �e can be thought

of as being small with respect to�e (e{ e) in order to be more

similar to what happens in real atoms, but for the solutions we

discuss here this is not necessary. Considering Gauss’ law, it is

obvious that the electric potential at any point outside the

sphere will not depend on whether the charge �e is distributed
homogeneously over the volume of the sphere, or rather over a

two-dimensional spherical shell. The potential will not depend

on the radius of the sphere either, and will be the same even if

the sphere shrinks to a point charge �e at the center of

the nucleus. Moreover, due to the spherical symmetry of the

problem, the additional electrostatic interaction between the

nucleus and this new charge distribution will not depend on

the orientation of the nucleus – it leads to a constant shift of

the interaction energy when compared to tm0:

EAðyÞ ¼ E0ðyÞ þ �2eC
e‘|fflffl{zfflffl}

EcorA

: ð8Þ

As is seen in Fig. 2, the total energy shifts downwards. This

shift (EcorA) is the (total) monopole shift for tmA w.r.t. tm0.

The monopole shift depends on the nuclear charge (+2e), the

size of the nucleus (l) and the amount of electron charge inside

the nucleus (�e). It does not depend on the orientation of the

nucleus (y). Concerning the two quantities that characterize

the angular dependence of the energy, we see that the average

value of the energy shifts by the same amount, whereas the

curvature is unchanged:

EtmA
av = Etm0

av + EcorA (9)

DEtmA = DEtm0. (10)

In a non-relativistic treatment, only s-electrons have a non-

vanishing probability at r = 0, i.e. inside the nucleus. As

s-electron orbitals are spherically symmetric, tmA is a valid

model for non-relativistic s-electron penetration. Table 1 lists

the values of the intranuclear electron charge e for a few

elements – it is extremely small, ranging from 10�14 to 10�7

elementary charges.

3 Monopole shift physics

3.1 Isotope shift

In atomic spectroscopy, the isotope shift refers to the small

differences in the position of atomic energy levels for different

isotopes A1X and A2X of the same element X (A1 and A2 are

atomic mass numbers and X can be any element). All such

isotopes have the same charge (same number of protons), yet a

different mass (different number of neutrons). This explains

one part of the effect (the mass shift): different masses lead to a

(slightly) different position of the center of mass of the atom,

and this affects the energy levels in a way that is well-

understood.11 It is the other part of the effect, however, that

interests us here: the field shift. It is illustrated in Fig. 3 by two

versions of tmA: a different number of neutrons leads in general

to a different size of the nucleus, expressed by a different mean

square radius. Therefore, in Fig. 3, the two toy atoms have a

‘nucleus’ with a different length 2l for the rigid rod. This

difference in l will lead to a different interaction energy in

the case without electrons inside the nucleus (tm0, eqn (1)).

Table 1 Order of magnitude values of some key quantities for a set of
elements: the total electron charge (and nuclear charge) �2e (unit:
elementary charge e). The electron–nucleus distance d, taken as the
atomic radius from Clementi et al.7 The number of electrons inside the
nucleus (e), taken as the electron charge density at the nuclear center
(from Clementi and Roetti8 and Gálvez and Porras,9 supplemented by
our own ab initio calculations) multiplied by the nuclear volume.
The distance of the intranuclear electrons from the origin (a, unit:
attometer) and the corresponding fractional value n= l/a, determined
by matching eqn (34) to estimated quadrupole anomalies (Table 2).
The nuclear radius l, taken from Angeli.10 The ratio of electrons inside
and outside the nucleus (e/e), and the ratio of nuclear radius and
electron–nucleus distance (l/d)

Symbol Unit Li K Rb I Hf Re U

2e e 3 19 37 53 72 75 92
d Å 1.67 2.43 2.65 1.15 2.08 1.88 1.75
e 10�8 e 3.5 � 10�6 6.5 � 10�3 0.15 1.1 9.2 13 92
a am 0.15 0.19 0.25 0.87 0.29 0.32 0.24
n 103 13 17.5 17.3 5.5 18.3 16.8 24
l fm 2.0 3.4 4.3 4.8 5.3 5.4 5.8
e/e 10�9 1.2 � 10�5 0.0034 0.041 0.21 1.3 1.7 10
l/d 10�5 1.2 1.4 1.6 4.2 2.5 2.9 3.3

y One can argue that a better analog with reality is obtained if the total
electron charge of tm0 would be redistributed in order to yield tmA:
charges �e + e/2 outside the nucleus and a charge �e inside, keeping
the total electron charge at 2e. This is correct. However, it makes the
resulting equations less simple, and it does not really affect the final
results. We will see that for realistic values of e and l the contribution
to the interaction energy from charges outside the nucleus is almost
insensitive to e and l. Therefore, we opt for the simpler toy models
with �2e as electron charge outside the nucleus for all of them.
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However, this is a vanishingly small effect, as can be under-

stood by taking the derivative of Etm0
av (eqn (3) or (4)) with

respect to l:

dEtm0
av

d‘
� � 2C

d3
‘: ð11Þ

Indeed, in the limit of a nucleus that is much smaller than the

size of the electron cloud (l { d, or liml-0) – which is the

situation that applies to real atoms (Table 1) – this derivative is

zero: the average interaction energy of tm0 hardly depends on

the size of the nucleus. This changes when there are electrons

inside the nucleus (tmA, eqn (9)). The derivative of the average

energy for tmA with respect to l is:

dEtmA
av

d‘
¼ dEtm0

av

d‘
þ 2eC

e

1

‘2
: ð12Þ

Even though there is a small factor e/e in the second term

(e { e, see Table 1), for sufficiently small values of l this term

becomes arbitrarily large. Hence, when there are electrons

inside the nucleus, the nuclear size has a significant impact on

the average interaction energy of tmA. This is the field shift

contribution to the isotope shift. It is experimentally observa-

ble by measuring the energy that is required for total ioniza-

tion of a free atom for each isotope.

Toy models tm0 and tmA show the physics behind the field

shift. The key issue is the factor 1/r in the electrostatic

potential. For electrons outside the nucleus, r has the order

of magnitude of 1 Å (d � l in tm0): 1/r is small and flat. For

electrons inside the nucleus, r is a few femtometers (the order

of magnitude of l): 1/r is large and steep. Variations in l

between different isotopes are of the order of magnitude of

hundreds of femtometers. This leads to variations in 1/r that

are negligible for electrons outside the nucleus, but significant

for electrons inside the nucleus.

3.2 Isomer shift

Another effect that originates from the monopole shift, is the

isomer shift in Mössbauer spectroscopy. There is an extensive

body of literature about this property, and about how it can be

used to obtain local information about chemical bonds in

solids.12–14 For our present purpose, the following concise

definition should be sufficient: the isomer shift gives the energy

difference between a nuclear transition observed with an

isotope AX embedded in one solid (called ‘the source’; s) and

the same transition observed with the same isotope embedded

in another solid (called ‘the absorber’; a). The shape of the

electron cloud of atom X, which is characterized by d and e,
characterizes the chemical bonding of these atoms in their

respective solids. These properties are different for the source

and the absorber (ds and es vs. da and ea). Furthermore, for

both source and absorber, two nuclear states will be involved:

the ground state (g) and the excited nuclear state (e) (i.e. a

structural isomer) of that particular isotope AX. In both states,

the nucleus has the same number of protons and neutrons, yet

these are differently configured. Therefore, the nuclear size

(characterized by l) is different for both states (lg vs. le). The

nuclear property l itself does not affect the electron properties

d and e.
All together, this gives 4 different situations, which are the

ones that are shown in Fig. 4: the excited nuclear state for the

Fig. 3 The isotope shift: two isotopes of the same element with the

same electron distribution (including an identical isotropic part inside

the nucleus), yet a different nuclear size (l1 a l2). This will lead to

different interaction energies for tmA, and the difference is in the first

place due to the electrons inside the nucleus.

Fig. 4 The four different situations for tmA that appear in our toy

model for the isomer shift (see text).
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atom embedded in the source (Fig. 4(a): le, ds, es), the

excited nuclear state for the atom embedded in the absorber

(Fig. 4(b): le, da, ea), the nuclear ground state for the atom

embedded in the source (Fig. 4(c): lg, ds, es), and the nuclear

ground state for the atom embedded in the absorber (Fig. 4(d):

lg, da, ea).
Fig. 5 summarizes the key features of the isomer shift. We

start discussing this picture at the upper right corner, which

represents the interaction energy of the toy model for the

absorber solid and the excited nuclear state (cf. Fig. 4(b)). The

dashed line represents the zero level for the interaction energy,

i.e. the excited toy nucleus and the electron charges are at an

infinite distance from each other. The solid line represents the

lowest interaction energy level for this excited state toy nucleus

model (y = 01). The difference between the dashed and full

lines is EA(y = 01; da, ea, le) (eqn (8)). According to eqn (8),

this energy difference can be separated into two terms: the first

term E0(y= 01; da, le) (indicated by a in Fig. 4 and identical to

eqn (1)), and the second term, EcorA(ea, le). It requires an

energy release of typically several keV to MeV to transform

the nucleus from its excited state (le) to its ground state (lg).

Therefore, the zero level for the interaction energy between the

electron cloud in the absorber solid and the nucleus in its

ground state (i.e. the dashed line in bottom-right of Fig. 5), lies

on an absolute energy scale much below the zero level for the

previous situation. Hence, the picture is not on the scale. The

energy difference between these two zero levels (i.e. between

the two dashed lines) – which we call g0 – is the energy it takes

to transform the nucleus from the ground state to the excited

state. The lowest interaction energy level for this ground state

toy nucleus model is given by eqn (8) with y = 01 and d = da,

e = ea and l = lg. According to eqn (8), the first term of this

energy is E0(y = 01; da, lg) (eqn (1)). However, as we saw in

Section 3.1, this is for realistic situations nearly identical to

E0(y = 01; da, le). Therefore, we indicate it by the same value

a. The second part of the interaction energy is given by the

second term from eqn (8), which we call here EcorA(ea, lg). We

saw in Section 3.1 that this term does depend significantly

on the value of l. Therefore, we arrive at the following

conclusion: the effective energy ga required to transform the

entire toy model for the absorber solid from its lowest

interaction energy level with the ground state toy nucleus to

its lowest interaction energy level with the excited state toy

nucleus, is not given exclusively by the energy g0 (the energy to

transform an isolated nucleus), but has an additional part that

is determined by the nuclear size and the electron charge inside

the nucleus:

ga ¼ g0 � EAðy ¼ 0�; da; ea; ‘eÞ þ EAðy ¼ 0�; da; ea; ‘gÞ

� g0 � 2Cea
e

1

‘e
� 1

‘g

� �
: ð13Þ

Exactly the same reasoning can be made for the source

material (left sides of Fig. 4 and 5), resulting in:

gs ¼ g0 � EAðy ¼ 0�; ds; es; ‘eÞ þ EAðy ¼ 0�; ds; es; ‘gÞ

� g0 � 2Ces
e

1

‘e
� 1

‘g

� �
: ð14Þ

The correction due to EA to the bare nuclear energy difference

g0 is 10 orders of magnitude smaller than g0 itself, and is too

small to be experimentally observable. However, Mössbauer

spectroscopy is capable of measuring the difference between

the effective transition energies:

Dg = ga � gs (15)

Dg � �2C

e
ðea � esÞ 1

‘e
� 1

‘g

� �
: ð16Þ

The quantity Dg is the isomer shift, and its toy model expres-

sion eqn (16) is extremely similar to the isomer shift

formula that is very well known in the Mössbauer commu-

nity.z The isomer shift is entirely determined by the size

difference of the nucleus in its ground and excited states

(a nuclear property), and the difference between the electron

charge inside the nucleus in source and absorber material

(a solid state property). By the latter, the isomer shift is

sensitive to very local details of the chemical bonding, and

can be used for instance as a fingerprint for the position of an

atom in a solid.

4 Toy model: tmB

We nowmove on to a new kind of toy model, that is essentially

different from tm0 or tmA, and that therefore will show

qualitatively different observable effects. This toy model –

which we call tmB from here on – is shown in Fig. 1(d). The

electron charge outside the nucleus is identical to tm0 and

tmA. Inside the nucleus, tmB has two point charges �e/2 that

form a fixed dumb-bell on the Z-axis, i.e. aligned with the

dumb-bell formed by the two external charges �e. Each of

these two point charges lies at a distance a from the origin. It

will be convenient later to express a as a fraction of the nuclear

radius: a = l/n, with n being a real number that is strictly

larger than 1 (n 4 1). Both tmA and tmB have the same total

charge �e inside the nucleus. The crucial difference between

them is that this charge has spherical symmetry for tmA, but

not for tmB. As a consequence, the additional interaction

energy due to the electron charge inside the nucleus does

Fig. 5 Energy levels involved in the isomer shift (see text).

z The common expression for the isomer shift contains charge
densities [C/m3] multiplied by nuclear mean square radii [m2]. This
leads to the same dimensions [C/m] as in eqn (16), where charges [C]
are divided by nuclear radii [m].
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depend on the orientation of the nucleus (compare eqn (17)

with eqn (8) for tmA):

EB(y) = E0(y) + EcorB(y) (17)

with (for l 4 a)

EcorBðyÞ ¼ � eC
e

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
‘2 sin2 yþ ð‘ cos y� aÞ2

q
0
B@

þ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
‘2 sin2 yþ ð‘ cos yþ aÞ2

q
1
CA:

ð18Þ

In the limiting case a - 0 (or n - N), tmB becomes equal to

tmA. Indeed: for this limit, eqn (17) becomes equal to eqn (8).

Graphically, eqn (17) translates into an interaction energy

EB(y) that is not only shifted downwards with respect to E0(y)
(as EA(y) was), but which has additionally also a different

curvature (Fig. 2). This can also be seen in the average energy

and the energy range for tmB (using a = l/n, with n 4 1):

EtmB
av ¼ Etm0

av � 2eC
e‘

n

p

K �4n

ðn�1Þ2
� �
n� 1

þ
K 4n

ðnþ1Þ2
� �
nþ 1

2
4

3
5

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
f ðnÞ

ð19Þ

EtmB
av = Etm0

av + f(n)EcorA (20)

DEtmB ¼ DEtm0 � 2eC
e‘

nffiffiffiffiffiffiffiffi
1þn2

p � n2

n2�1

� �
|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

pðnÞ

ð21Þ

DEtmB � DEtm0 þ 3eC
e‘n2

ð22Þ

In eqn (20), the average energy for tmB is written as a function

of the average energy for tmA. The difference between both is

expressed by the function f(n):

f ðnÞ ¼ n

p

K �4n

ðn�1Þ2
� �
n� 1

þ
K 4n

ðnþ1Þ2
� �
nþ 1

2
4

3
5 ð23Þ

f ðnÞ � 1þ 1

4n2
ðn � 1Þ: ð24Þ

In the limit n - N, tmB evolves to tmA. This is consistent

with the fact that limn-N f(n) = 1 (Fig. 6). Because f(n) 4 1,

the average energy for tmB is always more negative than the

average energy for tmA, regardless of the value of n. More-

over, unless n is only marginally larger than 1, the value of f(n)

is close to 1: the average energy for tmB is only slightly below

the average energy for tmA (see also Fig. 2). This means that it

is in the first place the amount of electron charge inside the

nucleus that determines the change in average energy (mono-

pole shift). The anisotropy of the electron charge inside the

nucleus has hardly an impact on the average energy.

The effect of this anisotropy manifests itself elsewhere. For

any allowed value of n, DEtmB is larger than DEtm0 = DEtmA.

This is a consequence of p(n) being always negative (Fig. 6).

The increase is maximal for n being barely larger than 1, and

tends to zero for large values of n, when tmB becomes equal to

tmA. The former case (n \ 1) corresponds to a highly

anisotropic electron charge distribution inside the nuclear

volume. The latter case (n-N, or tmB- tmA) corresponds

to an almost spherical electron charge distribution inside the

nuclear volume. The increase in the energy range and the

corresponding increase in the curvature are therefore propor-

tional to the degree of anisotropy of the electron charge

distribution inside the nucleus (large curvature change = large

anisotropy = small n ðn �4 1Þ):

DEtmB � DEtm0|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
DEtmB

cor

� 3eC
e

1

‘n2
ð25Þ

DEtmB � DEtm0|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
DEtmB

cor

� 3eC
e

1

an3
: ð26Þ

This change in curvature represents the (total) quadrupole

shift for tmB w.r.t. tm0 or tmA, which depends on the nuclear

charge (+2e), the size of the nucleus (l), the amount of

electron charge inside the nucleus (�e) and the deviation from

spherical symmetry of this electron charge (expressed by n

and/or a).

Whereas a spherically symmetric charge distribution inside

the nucleus is realized in Nature by s-electrons, a non-spherical

charge distribution is realized by relativistic p1/2-electrons

(non-relativistic p-electrons do not enter the nucleus). There-

fore, tmB is a valid model for relativistic aspects of electron

penetration into the nucleus. The survey of realistic values in

Table 1 shows that the anisotropy of the intranuclear electron

distribution is extremely small: the separation between the two

�e/2 point charges is measured in attometer, which is 3 to 4

orders of magnitude smaller than the dimensions of the

nucleus (therefore n c 1). This allows making a series expan-

sion in the small factor 1/n, which transforms eqn (21) into the

simpler eqn (22).

5 Quadrupole shift physics

5.1 Regular quadrupole shift

Now, we apply again the arguments that were developed in

Section 3.1 for the average interaction energy Eav, but this time

for the curvature DE. Two isotopes of the same element, will

usually have a different nuclear radius l. We have seen in

Section 3.1 that this affects the average energy significantly

only if there is an electron charge inside the nuclear volume (tmA).Fig. 6 The functions p(n) (eqn (21)) and f(n) (eqn (23)).
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How does the energy curvature DE depend on l? For tm0, the

derivative of the curvature with respect to l is:

dDEtm0

d‘
¼ 4C

d3
‘: ð27Þ

According to eqn (10), exactly the same expression holds for

tmA. In the limit l{ d or l- 0, this expression tends to zero:

the curvature depends negligibly on the nuclear size, regardless

of whether there are spherically symmetric electron charges

inside the nucleus (tmA) or no electrons at all inside the

nucleus (tm0). This becomes different for tmB, with anisotropic

electron charges inside the nucleus (Fig. 7):

dDEtmB

d‘
¼ dDEtm0

d‘
þ 2eC

e

nffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ n2

p � n2

n2 � 1

� �
1

‘2
: ð28Þ

In the same limit, liml-0, this expression tends to infinity: with

anisotropic electron charges inside the nucleus, the curvature

becomes significantly more sensitive to the nuclear size.

For realistic atoms, the curvature due to electrons outside

the nucleus (DEtm0) is several orders of magnitude larger than

the curvature due to electrons inside the nucleus (DEtmB
cor ) (see

Koch et al.,6 and also eqn (21) with values from Table 1).

Curvatures DE are experimentally accessible as the so-called

quadrupole coupling constant nQ:

nQ ¼ eQVzz

h
ð29Þ

where h is Planck’s constant, Q is the nuclear property (the

nuclear quadrupole moment, which expresses the deviation

from spherical symmetry of the nucleus), and Vzz is the

electron property (the electric-field gradient, which expresses

the deviation from spherical symmetry of the electron distri-

bution at the position of the nucleus). For our toy models, Q is

proportional to l2, and Vzz is proportional to 1/d3. The

electron property Vzz can be determined by first-principles

electronic structure calculations. Knowing Vzz (calculated)

and nQ (measured), Q can be determined from eqn (29). Such

a procedure is routinely used to determine the nuclear quad-

rupole moment Q of isotopes (see Koch et al.6 and references

therein). In toy model language, it means that the nuclear

property l2 can be determined from eqn (21) if the electron

quantities d, e and n and the experimental quantity DE are

known. The precision by which the electron properties can be

calculated, limits the precision by which the nuclear property

(Q) can be determined. As a matter of fact, the resulting

uncertainty in the nuclear property is that large that it is

useless to take the small correction DEtmB
cor (or e and n) into

account. Experimentally observed DE values can be explained

within their error bar by the DEtm0 term alone. This is different

from the case of the isotope shift, where the correction term

EcorA in eqn (9) is significantly larger than the experimental

error bar.

From this point of view, the quadrupole shift DEtmB
cor is de

facto not experimentally observable. As we have pointed out in

a recent paper,6 however, several ‘curvature’ experiments can

be combined in such a way that a quantity is obtained that is

sensitive to the quadrupole shift: this is the quadrupole anomaly,

which will be discussed in the next section.

5.2 Quadrupole anomaly

Albeit the nuclear quadrupole moment Q can often be deter-

mined with limited precision only, the ratio Q1/Q2 between the

quadrupole moments of two isotopes of the same element can

be known with much higher accuracy. The reason for this can

be understood by inspecting tm0. Imagine a curvature

DEtm0
1 being measured for isotope 1 (characterized by l1), in

a given electron environment characterized by d = d1. The

same is done for another isotope of the same element (l2),

embedded in the same electron environment (d = d2 = d1).

According to eqn (7), the ratio of curvatures – which is itself

an experimentally accessible number – is given by:

DEtm0
1

DEtm0
2

� d2

d1

� �3

|fflfflffl{zfflfflffl}
¼1

‘1
‘2

� �2

: ð30Þ

Without electrons inside the nucleus, the ratio of experi-

mentally known curvatures depends only on the ratio of

nuclear radii (translated into real atoms, it means that the

ratio of quadrupole coupling constants depends on the ratio of

nuclear quadrupole moments – see eqn (44) in ref. 6). According

to eqn (10), the same holds for a spherically symmetric electron

distribution inside the nucleus. As curvatures (quadrupole

coupling constants) can be measured with high precision, ratios

of curvatures – and therefore also ratios of nuclear properties

(quadrupole moments) – can be known with high precision too.

This becomes different once we allow non-isotropic electron

charges inside the nucleus (tmB). According to eqn (21), the

ratio between the curvatures for two different isotopes in the

same electron environment is (‘environment A’, Fig. 8, left):

DEtmB
1

DEtmB
2

����
envA

� ‘1
‘2

� �2 1� ea
e

da
‘1

� �3
pðnaÞ

1� ea
e

da
‘2

� �3
pðnaÞ

0
B@

1
CA ð31Þ

Fig. 7 The quadrupole shift: two isotopes of the same element with

the same electron distribution (including an identical anisotropic part

inside the nucleus), yet a different nuclear shape (l1 a l2). This will

lead to different interaction energies for tmB, and the difference is in

the first place due to the electrons inside the nucleus.
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DEtmB
1

DEtmB
2

����
envA

� ‘1
‘2

� �2

1þ ead3
a

e
pðnaÞ 1

‘32
� 1

‘31

� �	 

ð32Þ

(da = d1 = d2, ea = e1 = e2, na = n1 = n2, l1 a l2). In order

to obtain eqn (31), the approximate expression eqn (7) was

used. Eqn (32) is obtained after a further approximation

(power series expansion), which is valid when e
e
d3

‘3
pðnÞ � 1,

which is true in real cases (easily verified from Table 1). The

ratio of curvatures does not depend on the simple nuclear

ratio l1/l2 any longer. Only if the electron charge inside the

nucleus becomes isotropic (n - N or tmB - tmA), or

if the electron charge inside the nucleus vanishes (e - 0 or

tmB - tm0), the simple dependence is restored. Albeit the

deviation from unity in eqn (31) or (32) is small, it is large

enough to affect curvature ratio experiments (= quadrupole

coupling experiments) outside the experimental error bar.

Nevertheless, although the measured ratios are affected by

the presence of anisotropic charges inside the nucleus, eqn (31)

or (32) does not lead to useful interpretations yet: no subset of

quantities from (l1, l2, n, e, d) is known a priori with a

sufficient precision to extract more precise values for any of

the remaining quantities of the set. An observable effect

eventually arises when the curvature ratio experiment is

repeated for the same two isotopes being embedded in a

second, different electron environment (‘environment B’,

Fig. 7, right):

d ¼ DEtmB
1

DEtmB
2

����
envA

�DEtmB
1

DEtmB
2

����
envB

ð33Þ

d � ‘1
‘2

� �2 ea
e
d3
apðnaÞ �

eb
e
d3
bpðnbÞ

� � 1

‘32
� 1

‘31

� �
: ð34Þ

The quantity d that is defined in this way, is the quadrupole

anomaly.8 As it is obtained from four DE values, it is directly

available from experiment. The quadrupole anomaly

becomes zero when there are no electrons inside the nucleus

(ea, eb - 0), or when the electron distribution inside the

nucleus is spherically symmetric (na, nb - N). Measuring

the quadrupole anomaly is therefore a way to get experimental

information on the anisotropy of the electron distribution

inside the nucleus.

6 Experimental status

Whereas the isotope shift and the Mössbauer isomer shift are

properties that are routinely measured in atomic spectroscopy

and Mössbauer spectroscopy, the quadrupole anomaly is a

‘new’ property. We have recently suggested6 a way to measure

it by high-precision molecular spectroscopy – this method is

outlined in Section 5.2 using the toy models. The very recent

experimental literature shows that the first observation of a

quadrupole anomaly might have become reality.

Table 2 lists several experimental realizations of the set of 4

situations that were described in Fig. 8 and in Section 5.2: 2

different isotopes of the same element, measured in 2 different

diatomic molecules, leading to 4 measurements. The property

that is measured is the quadrupole coupling constant nQ
(eqn (29)). The quadrupole coupling constant corresponds to

the curvature DE for the toy models. For either of both

molecules, the ratio of the quadrupole coupling constants

for both isotopes is listed in Table 2. The difference between

these ratios is the experimental quadrupole anomaly dexp
(eqn (33)). An order of magnitude estimate dest for the quad-

rupole anomaly, based on ab initio calculations, is listed as

well.6 The question at stake is: have experiments convincingly

shown that d can be different from zero?

Among the six quartets that are listed in Table 2, two lead to

a dexp that is different from zero beyond the error bar: K in KF

and KI, and Rb in RbF and RbI. In the former case, the

observed value of d is three orders of magnitude larger

than expected. This makes it unlikely that this is due to a

quadrupole anomaly. Either there is a problem with the

interpretation of the experimental results, or other effects

Fig. 8 The four different situations for tmB that appear in our toy

model for the quadrupole anomaly (see text).

8 In Koch et al.,6 we defined the quadrupole anomaly d in analogy to
the hyperfine anomaly D (Bohr–Weisskopf effect): as the deviation
from unity of a particular quadrupole coupling constant ratio (eqn 44
in Koch et al.6 or eqn (32) in the present work). However, in contrast
to the hyperfine anomaly, this type of quadrupole anomaly cannot be
experimentally determined with meaningful accuracy. Therefore, from
the present paper onwards, we define the quadrupole anomaly d as in
eqn (33): as the difference between two particular quadrupole coupling
constant ratios. This is an experimentally observable quantity, and it is
therefore more meaningful to use the symbol d and the word ‘quadru-
pole anomaly’ for this concept.
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manifest themselves (see Koch et al.6). In the case of Rb in

RbF and RbI, the observed difference is in the 6th digit, which

is consistent with the estimated order of magnitude. Thanks to

very recent high-precision molecular beam electric resonance

experiments on RbI,21 the error bar on |dexp| is smaller than

|dexp| itself, yet only marginally. It is premature to consider this

as a proof for the presence of a quadrupole anomaly, yet the

search looks promising: if a similar accuracy could be reached

for Hf or Re, where the effect is expected to be almost an order

of magnitude larger, a more convincing proof could be

established. At the theoretical side, it would be worthwhile

to predict more precise values for the expected quadrupole

anomaly in these molecular quartets, using quantum chemical

methods.

As discussed in the appendix of ref. 6, other small quadru-

pole-like interactions can be present as well, the most impor-

tant one being the pseudo quadrupole interaction.1,27 Their

presence hinders the unique assignment of non-zero d values to
a quadrupole anomaly. Obtaining precise quantum chemical

predictions for these contributions in the cases listed in Table 2

is therefore a worthwhile task as well.

7 Conclusions

The presence of a spherically symmetric electron charge

distribution inside the nucleus affects the average value of

the interaction energy between nucleus and electrons. This

leads to the monopole shift, which can be experimentally

observed (isotope shift, isomer shift). We demonstrated in this

paper how the monopole shift is present in a very simple

classical toy model (tmA), and we used this toy model to build

classical analogs for the isotope shift (Fig. 3) and the isomer

shift (Fig. 4).

If the distribution of electrons inside the nucleus is not

spherically symmetric, another and much smaller effect

appears: the quadrupole shift. We demonstrated how the

quadrupole shift is present in yet another simple toy model

(tmB). We used this toy model to illustrate how a combination

of 4 well-chosen high-precision molecular spectroscopy experi-

ments can detect the presence of a quadrupole shift via the

quadrupole anomaly (Fig. 7). Detecting a quadrupole anomaly

is at the limit of the currently achievable experimental precision.

A survey of the recent experimental literature suggests that an

unambiguous demonstration of the existence of the quadru-

pole anomaly is within reach.

The use of simple, classical toy models displays the physics

behind the monopole shift and the quadrupole shift in a most

clear way, not troubled by the technical complexity of a

relativistic quantum multipole expansion for real molecules.

Only Coulomb’s law and straightforward calculus are

required. It is our hope that the present derivation will

contribute to a more wide-spread understanding of, in parti-

cular, the quadrupole shift and quadrupole anomaly. Table 1 –

which can be easily extended and/or interpolated for other

elements – can be used to obtain a quick estimate for the size

of these effects in specific situation. Armed with this insight,

experimental molecular spectroscopy and quantum chemistry

can move on towards a better understanding of these extremely

small effects in molecular spectra.

Appendix A: Calculation of Eav

Although the average of a function as given by eqn (2) is a

simple concept, the actual evaluation of the integral can

sometimes be involved. Indeed, this is the only place in this

paper where we cannot meet the promise of using elementary

calculus only. The indefinite integral in eqn (2) (i.e. without the

integration limits), with E0 given by eqn (1), can be found by

commonly available symbolic algebra software (Mathematica,

Maple, . . .). The result contains a special function: the incomplete

elliptic integral of the first kind, Fða
2
jzÞ. In order to find the

definite integral given by eqn (2), this function F has to be

evaluated for the integration limits a = 0 and a = p as

arguments. It is a property of this special function that it is

zero whenever a = 0, so one half of the terms drop out.

Furthermore, for the specific value a = p, the following

identity holds: Fðp
2
jzÞ ¼ KðzÞ. Here, K(z) is the complete elliptic

integral of the first kind, another special function for which

numerical values are tabulated or can be found by mathe-

matical software. Its formal definition is:

KðzÞ ¼
Zp

2

0

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z sin2ðtÞ

q dt ð35Þ

(beware of alternative definitions with k2 = z: K(k) a K(z),

as the former is symmetric in �k and the latter is not).

Table 2 Ratios of experimental quadrupole coupling constants (third column) for two different isotopes (‘‘1’’ and ‘‘2’’) in two different molecules,
collected from the literature (updated from ref. 6). Experimental values for the quadrupole anomaly dexp are derived from these using eqn (33). An
estimate for the quadrupole anomaly based on ab initio calculations6 is given as well

Molecules Isotopes DEtmB
1 /DEtmB

2 |dexp| |dest| Ref.

6Li19F, 7Li19F 6Li/7Li 0.020161 � 0.000013 0.00012(15) 6 � 10�10 15
6Li127I, 7Li127I 6Li/7Li 0.02028 � 0.00014 16
41K19F, 39K19F 41K/39K 1.217699 � 0.000055 0.000206(6) 1 � 10�7 17
41K127I, 39K127I 41K/39K 1.2174935 � 0.0000099 18
87Rb19F, 85Rb19F 87Rb/85Rb 0.4838301 � 0.0000018 0.000007(24) 1 � 10�6 19
87Rb35Cl, 85Rb35Cl 87Rb/85Rb 0.483837 � 0.000022 20
87Rb19F, 85Rb19F 87Rb/85Rb 0.4838301 � 0.0000018 0.0000039(30) 1 � 10�6 19
87Rb127I, 85Rb127I 87Rb/85Rb 0.4838262 � 0.0000012 21
179Hf16O, 177Hf16O 179Hf/177Hf 1.13004 � 0.00001 0.00000(2) 7 � 10�6 22
179Hf32S, 177Hf32S 179Hf/177Hf 1.13004 � 0.00001 23
H187Re(CO)5, H

185Re(CO)5
187Re/185Re 0.94636 � 0.00005 0.000035(55) 7 � 10�6 24, 25

CH3
187ReO3, CH3

185ReO3
187Re/185Re 0.946325 � 0.000005 26
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The argument z can be complex, but we will need only real

arguments. Therefore, also K(z) will be real only. The function

K(z) is plotted for the relevant range z A [�5,+1] in Fig. 9.

This leads to the expressions in eqn (3) and (19). The function

K(z) can be expanded in a series for z E 0:

KðzÞ ¼ p
2

1þ 1

2

� �2

zþ 1� 3

2� 4

� �2

z2 þ . . .

 !
: ð36Þ

Inserting this series in eqn (3), subsequently making an

expansion of all factors ð1þ ‘
dÞn, and retaining only terms up

to second order in l/d, lead to the approximate expression

eqn (4). Exactly the same procedure can be used to obtain

eqn (24) from eqn (23), as after substituting n by 1/x one sees

that eqn (23) has the same structure as eqn (3).
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