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Abstract

This document is meant for optional background reading when study-
ing www.hyperfinecourse.org. It deals with one of the chapters of this
course. The formal course content is defined by the website and videos.
The present document does not belong to the formal course content. It
covers the same topics, but usually with more mathematical background,
more physical background and more examples. Feel free to use it, as long
as it helps you mastering the course content in the videos. If you prefer
studying from the videos only, this is perfectly fine.

The present text has been prepared by Jeffrey De Rycke (student in
this course in the year 2018-2019). He started from a partial syllabus
written by Stefaan Cottenier for an earlier version of this course, and
cleaned, edited and elaborated upon that material. That syllabus was
itself inspired by a course taught by Michel Rots at KU Leuven (roughly
1990-1995).
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1 From toy model to quantum physics

The writer of this document didn’t think there was more background to add in
addition to the course video about this topic. Writing about what is discussed
in the video would be a literal translation from video to text, and this is not the
purpose of these documents. For additional background on this video, please
read https://biblio.ugent.be/publication/2988716/file/2988720.pdf. This is the
paper from where said toy model originates and is writen by K. Rose and S. Cot-
tenier (the lecturer of this course). The paper is free to download for everybody
with a UGent account.
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2 Quadrupole operator

As developed in Hyperfinecourse A: quantum version (equation 31), the leading
correction term in the hamiltonian for the charge-charge interaction is:

Ĥ1 = Ĥqq = − e2NZ

5ε0

(
1

r3
e

Y 2(θe, φe)

)
·
(
r2
n Y

2(θn, φn)
)

(1)

In first order perturbation theory, we have to evaluate this in the eigenstates∣∣∣I ⊗ ψ(0)
e

〉
of the monopole hamiltonian Ĥ0 = T̂n + Ûnn + Ĥ0:

Eqq = −
〈
ψ(0)
e ⊗ I

∣∣∣ e2NZ

5ε0

(
1

r3
e

Y 2(θe, φe)

)
·
(
r2
n Y

2(θn, φn)
) ∣∣∣I ⊗ ψ(0)

e

〉
(2)

We do not consider charge-charge overlap, therefore we can separate the expres-
sion into:

E(2)
qq = 〈I| sQ̂(2)

sh |I〉 ·
〈
ψ(0)
e

∣∣∣ sV̂ (2)
sh

∣∣∣ψ(0)
e

〉
(3)

where we defined the nuclear electric quadrupole moment tensor operator (di-
mension Cm2 or electron barn (eb))

Q̂2
q(~rn) = eZ

√
4π

5
r2
n Y

2
q (θn, φn) (4)

which operates on the nuclear space, and the electric quadrupole field tensor
operator (or electric-field gradient tensor operator, dimension V/m2)

V̂ 2
q (~re) = − eN√

20π ε0

1

r3
e

Y 2
q (θe, φe) (5)

which operates on the electron space.

Let us not forget that expression 3 is a matrix. More precisely the matrix
for the degenerate case of first order perturbation. It gives us information of
the behaviour of the nucleus in the presence of the electric field gradient from
the electrons.
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2.1 The electric-field gradient operator

The matrix on the right in equation 3 is a tensor of rank two. It is symmetric
and traceless and can therefore be described by 5 numbers. These 5 values can
be calculated via ab initio code (which we do not discuss here), we will consider
these 5 values as known. The 5 values depend on the choice of our axis system.

Explicit expressions for the components of the cartesian forms of Q
(2)
sh and V

(2)
sh

can be found by making the substitutions Hyperfinecourse A: quantum version
(equation 17-21) in:

E
(2)
pot =

1

6

∫
1

∫
2

 3x2
1 − r2

1 3x1y1 3x1z1

3x1y1 3y2
1 − r2

1 3y1z1

3x1z1 3y1z1 3z2
1 − r2

1

 · 1

r5
2

 3x2
2 − r2

2 3x2y2 3x2z2

3x2y2 3y2
2 − r2

2 3y2z2

3x2z2 3y2z2 3z2
2 − r2

2

 d~r1d~r2

(6)

or in (first dot product):

E
(2)
pot =

1

6

 {3x2
1

}
−
{
r2
1

}
{3x1y1} {3x1z1}

{3y1x1}
{

3y2
1

}
−
{
r2
1

}
{3y1z1}

{3z1x1} {3z1y1}
{

3z2
1

}
−
{
r2
1

}
 ·



∂2V2(~0)
∂x2

1
− ∆V2(~0)

3
∂2V2(~0)
∂y1∂x1

∂2V2(~0)
∂z1∂x1

∂2V2(~0)
∂x1∂y1

∂2V2(~0)
∂y21

− ∆V2(~0)
3

∂2V2(~0)
∂z1∂y1

∂2V2(~0)
∂x1∂z1

∂2f(~0)
∂y1∂z1

∂2V2(~0)
∂z21

− ∆V2(~0)
3

 +

1

6

 {r2
1

}
0 0

0
{
r2
1

}
0

0 0
{
r2
1

}
 ·


∆V2(~0)
3 0 0

0 ∆V2(~0)
3 0

0 0 ∆V2(~0)
3

 (7)

Using either expressions produces identical results only if there is no electron
penetration in the nucleus. That was to be expected, as equation 4 was derived
for the situation without penetration. The more general result obtained by
equation 5 is:

V̂ij = − eN

4πε0

3xiexje − r3
eδij

r5
e

− ρe(~0)

3ε0
δij (8)

The result for the quadrupole moment tensor does not depend on penetration
being present or not:

Q̂ij = eZ
(
3xinxjn − r3

nδij
)

(9)

If we note
〈

Ψ
(0)
e

∣∣∣ V̂ij ∣∣∣Ψ(0)
e

〉
≡ Vij , we can express the matrix elements of V̂ 2

as follows: 〈
ψ(0)
e

∣∣∣ V̂ 2
0

∣∣∣ψ(0)
e

〉
=

1

2
Vzz
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〈
ψ(0)
e

∣∣∣ V̂ 2
±1

∣∣∣ψ(0)
e

〉
= ∓ 1√

6
(Vxz ± Vyz) (10)〈

ψ(0)
e

∣∣∣ V̂ 2
±2

∣∣∣ψ(0)
e

〉
=

1

2
√

6
(Vxx − Vyy ± iVxy)

These matrix elements can be considerably simplified if we work in a principal
axis system (PAS) for the electric-field gradient. For a crystalline solid this is
something meaningful, as the lattice breaks the isotropy of space and provides
special directions relative to which the PAS can be defined. The PAS is chosen
such that the electric-field gradient tensor1 at the point of the crystal we are
interested in (the nucleus of the considered atom) is as simple as possible.

2.2 Intermezzo: Principal axis system rank 2 tensor

A principal axis system for a spherical tensor of rank 2 is an axis system in which
the 3× 3-matrix of the cartesian form of this tensor is diagonal (for symmetric
matrices this is always possible). Once XYZ is rotated such that the matrix is
diagonal, the axes are renamed by convention such that |azz| ≥ |ayy| ≥ |axx|.
The cartesian form in the PAS is now: axx 0 0

0 ayy 0
0 0 azz

 (11)

The trace of matrix is invariant upon rotation of the axis system and therefore
remains zero. It means we have only 2 degrees of freedom in 11. Because there
are also 3 degrees of freedom needed to specify the PAS with respect to the
original XYZ (e.g. 3 Euler angles), we retain the 5 degrees of freedom expected
for a spherical tensor of rank 2. Using the foreseen relations between cartesian
and spherical components (Hyperfinecourse A: framework. Inverse relations of
equations 27 and 28), we see that the spherical components in the PAS are:

a2
0 =

1

2
azz

a2
±1 = 0 (12)

a2
±2 =

1

2
√

6
(axx − ayy)

Because a2
+2 = a2

−2 also in the spherical components only 2 apparent degrees of
freedom are left. Again because of the 3 degrees of freedom needed to specify
the PAS, we find back the 5 degrees of freedom which are needed.

〈
ψ(0)
e

∣∣∣ V̂ 2
0

∣∣∣ψ(0)
e

〉
=

1

2
Vzz

1Attention: not the tensor operator, which is something we cannot change (it is as it
is), but the electric-field gradient tensor itself, i.e. the expectation value of the electric-field
gradient tensor operator.
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〈
ψ(0)
e

∣∣∣ V̂ 2
±1

∣∣∣ψ(0)
e

〉
= 0 (13)〈

ψ(0)
e

∣∣∣ V̂ 2
±2

∣∣∣ψ(0)
e

〉
=

1

2
√

6
(Vxx − Vyy)

The 3 axes of the PAS are named such that |Vzz| ≥ |Vyy| ≥ |Vxx|. Be aware that

the PAS is dependent on
∣∣∣ψ(0)
e

〉
: it is not something universal, but depends on

the particular compound you examine! Because of the condition on the trace
of the cartesian form (traceless), only two degrees of freedom are left in 13. We
can write this explicitly by defining a parameter η:

η =
Vxx − Vyy

Vzz
(14)

which fulfills the relation 0 ≤ η ≤ 1. With this definition we can write the
spherical components in the PAS as:

〈
ψ(0)
e

∣∣∣ V̂ 2
0

∣∣∣ψ(0)
e

〉
=

1

2
Vzz〈

ψ(0)
e

∣∣∣ V̂ 2
±1

∣∣∣ψ(0)
e

〉
= 0 (15)〈

ψ(0)
e

∣∣∣ V̂ 2
±2

∣∣∣ψ(0)
e

〉
=

1

2
√

6
η Vzz

Only η and Vzz determine the electric-field gradient, indeed 2 degrees of free-
dom. The 3 other degrees of freedom expected for a spherical tensor of rank 2
are used to specify the PAS with respect to the original axis system, e.g. by 3
Euler angles. One calls η the asymmetry parameter of the electric-field gradi-
ent. The reason is that for η = 0 the xx- and yy-components of the cartesian
form are equal: the gradient of the electric field is the same in all directions in
the XY-plane, hence the electric-field gradient has axial symmetry about the
Z-axis2. The more η deviates from 0 and approaches 1, the more the gradient of
the electric field becomes stronger in the y-direction compared to the x-direction
(the gradient in the z-direction remains the strongest of course).

2This can be seen also in the spherical component: only V 2
0 is not zero, hence there is axial

symmetry.
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2.3 The nuclear electric quadrupole moment operator

Let us now look to the first term in equation 3. Again we are faced with the
problem that we do not know explicit expressions for the nuclear many-body
wave functions |I〉. As for the 3 components of the magnetic dipole operator,
we will transform the 5 components of the electric quadrupole moment operator
Q̂2
q(~rn) into expressions that involve an experimentally observable scalar – ‘the’

quadrupole moment Q – and operators for which we can calculate the matrix
elements in the |I〉 basis. They will depend on the (experimentally known)
value of I. In contrast to the magnetic case, the |I,m〉 will not be eigen states
of the hamiltonian, such that non-diagonal matrix elements will be present.
The transformation takes somewhat more effort than for the magnetic case,
and starts from the Wigner-Eckart theorem. This famous theorem states that
the matrix elements of all spherical tensors of rank n are proportional, because
they can be written as:

<I ′, m′I |Tnq | I, mI>= (−1)I
′−m′I

(
I ′ n I
−m′I q mI

)
<I ′ ||Tn|| I > (16)

(The so-called reduced matrix element < I ′ ||Tn|| I > is independent of m′I ,
mI and q, and the Wigner 3j-symbol between large parentheses has a close
relationship3 to the Clebsch-Gordan coefficients.) Indeed, the same type of
matrix element of a spherical tensor An of the same rank is:

<I ′, m′I |Anq | I, mI>= (−1)I
′−m′I

(
I ′ n I
−m′I q mI

)
<I ′ ||An|| I > (18)

and therefore

<I ′, m′I |Tnq | I, mI>

<I ′, m′I |Anq | I, mI>
=

<I ′ ||Tn|| I >
<I ′ ||An|| I >

= C (19)

with C a constant depending on I ′, I and n, but not on mI , m
′
I and q.

The tensor operators r2
n Y

2(θn, φn) and I2 Y 2(~I) can be shown to be both4

spherical tensor operators of rank 2. Applying equation 19 we get:

<I ′, m′I | r2
n Y

2(θn, φn) | I, mI>= C <I ′, m′I | I2 Y 2(~I) | I, mI> (20)

With this equation, we can write the matrix elements of Q̂2
q(~rn) in terms of

I2 Y 2(~I). But then we need explicit expressions for Y 2
q (~I). For q = 0 and with

3The exact relation is:(
j1 j2 j3
m1 m2 m3

)
= (−1)j1−j2−m3

1
√

2j3 + 1
(j1 j2m1m2 | j1 j2 j3m3) (17)

One often uses 3j-symbols instead of Clebsch-Gordan coefficients because the former have
nicer symmetry properties.

4Interpret the notation Y 2(~I) as follows: in Y 2(θn, φn) (or Y 2(~r)), θn and φn give the

direction of ~rn. Use therefore in Y 2(~I) as argument for Y 2 the angles which specify the

direction of ~I.
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θ and φ giving the direction of a position vector ~r, we can with cos θ = z/r write
Y 2

0 as5:

Y 2
0 (θ, φ) = Y 2

0 (~r) =
1

2

√
5

4π

(
3z2 − r2

r2

)
(23)

r2 Y 2
0 (~r) =

1

2

√
5

4π

(
3z2 − r2

)
(24)

x, y an z are the x-, y- and z-components of ~r. If we note the x-, y- and
z-components of ~I as Ix, Iy and Iz, we can by analogy write:

I2 Y 2
0 (~I) =

1

2

√
5

4π

(
3I2
z − I2

)
(25)

Show yourself that:

I2 Y 2
±1 = ∓

√
15

8π

1

2
(IzI± + I±Iz) (26)

I2 Y 2
±2 =

1

4

√
15

2π
I2
± (27)

The operators Î+ and Î− are defined in hyperfinecourse A: magnetic hyperfine
interaction (equations 16 and 17).

Our last task before having found the nuclear matrix elements, is to search
for the value of the proportionality constant C. First we define similarly the
observable quadrupole moment Q of the nucleus:

Q = Z <I, mI = I| 3z2 − r2| I, mI = I > (28)

= Z 2

√
4π

5
<I, I| r2

nY
2
0 (~r)| I, I > (29)

Note the difference between this definition (just a number) and the quadrupole
tensor (5 components). Following general practice, we define this observable
quadrupole moment in units of m2, and not in units of Cm2 as we did for the
quadrupole moment tensor (equation 4). Numerical values for Q are usually
given in barn (1 barn = 1 b = 10−28 m2, typical values are 0 - 100 b). The

corresponding unit for the tensor Q
(2)
q is the electron barn (eb)6.

5

Y 2
0 (θ, φ) =

√
5

4π

(
3

2
cos2 θ −

1

2

)
(21)

(22)

6Do not confuse the electron barn with the Coulomb barn (Cb), which is not used in
practice. 1 eb = 1.602 · 10−19 Cb = 1.602 · 10−47 Cm2.
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Apply now Wigner-Eckart to the definition of Q:

Q = Z 2

√
4π

5

(
I 2 I
−I 0 I

)
<I || r2

nY
2(~r)|| I > (30)

and hence:

<I || r2
nY

2(~r)|| I > =
Q

Z 2
√

4π
5

(
I 2 I
−I 0 I

) (31)

which expresses the reduced matrix element of r2
n Y

2( ~rn) as a function of ob-
servable quantities. Now apply Wigner-Eckart again, on the following matrix
element of the other operator:

<I, I| I2Y 2
0 (~I)| I, I >=

(
I 2 I
−I 0 I

)
<I || I2Y 2(~I)|| I > (32)

On the other hand, also this is true:

<I, I| I2Y 2
0 (~I)| I, I > =

1

2

√
5

4π
<I, I| 3I2

z − I2| I, I > (33)

=
1

2

√
5

4π
h̄2
(
3I2 − I(I + 1)

)
(34)

=
1

2

√
5

4π
h̄2 (I (2I − 1)) (35)

Combining 32 with 35 gives the reduced matrix element of I2 Y 2(~I), which
together with 31, 19 and 20 finally yields the desired constant:

C =
Q

Z h̄2 (I(2I − 1))
(36)

We can now finally express the quadrupole moment operator in terms of Q and
the operators Î2, Îz and Î±:

Q̂2
q =

√
4π

5

eQ

I (2I − 1) h̄2
~̂I

2

Y 2
q (~̂I) (37)

with ~̂I
2

Y 2
q (~̂I) given by equations 25 to 27.

All this enables us to write down explicitly the nuclear matrix elements:

<I, m′I |Q2
0 | I, mI>= (38)

1

2

eQ

I(2I − 1)

(
3m2 − I(I + 1)

)
δmI ,m′I
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<I, m′I |Q2
±1 | I, mI>= (39)

∓ 1

2

√
3

2

eQ

I(2I − 1)

√
I(I + 1) − mI(mI ± 1) (2mI ± 1) δm′

I
,mI+1

<I, m′I |Q2
±2 | I, mI>= (40)

1

2

√
3

2

eQ

I(2I − 1)

√
(I(I + 1)−mI(mI ± 1)) (I(I + 1)− (mI ± 1)(mI ± 2)) δm′

I
,mI+2

The observable nuclear quadrupole moment Q as defined by equation 29 is
an experimentally accessible measure for the deviation from spherical symme-
try of the nucleus. We can make the observation that due to equations 20, 29
and 35, Q is zero for I = 0 and I = 1/2, which means that these nuclei are
always spherically symmetric. As a result, all nuclear matrix elements are zero
in these two cases, and the quadrupole hamiltonian will not yield any energy
contribution. The lowest spin for which a quadrupole contribution to the total
energy is observable is therefore I = 1. Similar arguments can be used to prove
that the lowest spin for which a hexadecapole moment can exist is I = 3/2.

2.4 Energy levels of the electric quadrupole hamiltonian
for solids

By inserting equations 37 and equations 15 into equation 3, we obtain the equiv-
alent of equation 31 in hyperfinecourse A: magnetic hyperfine interaction: a
Hamiltonian that describes the energy contribution due to the interaction be-
tween a specific electric-field gradient tensor (specified by Vzz , η and the orienta-
tion of its PAS with respect to the crystal) and the nuclear quadrupole moment
tensor, depending on the orientation of the latter with respect to the PAS:

Hnuc
qq =

eQVzz

4 I(2I − 1) h̄2

[
(3I2

z − I2) +
η

2
(I2

+ + I2
−)
]

(41)

This hamiltonian depends on the electric-field gradient through Vzz and η, and
on the spin of the nucleus through I. It also depends on the orientation of the
nucleus (mI), through Îz and Î2

±. As the unperturbed Hamiltonian T̂n + Ûnn +

Ĥ0 does not depend on mI , we should use first order perturbation theory for
the degenerate case. In contrast to the magnetic case, the matrix formed by
〈m′I , I|Hnuc

qq |I, mI〉 is not diagonal, due to the presence of Î±. Therefore, it
must be diagonalized in order to find the eigenvalues and eigenfunctions. The
only – and important – exception is when the electric-field gradient has axial
symmetry (η = 0). We examine now the eigenstates and eigenvalues of Hnuc

qq

with and without axial symmetry of the electric-field gradient.
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3 Case studies & symmetry

3.1 Analytical example 1: I = 3/2

We will search now explicit and analytical expressions for eigen values and
eigen functions of a non-axially symmetric quadrupole hamiltonian for the case
I = 3/2. These eigen states |N > are not the | I, mI >, but because the latter
form a basis the equality ∑

mI

| I, mI><I, mI | = 1 (42)

holds, and this we can use to decompose |N> in the | I, mI>-basis:

|N>=
∑
mI

<I, mI |N>︸ ︷︷ ︸
cmI

| I, mI> (43)

Our goal is to find the coefficients cmI
7.

The non-zero matrix elements of Hnuc
qq in the | I, mI>-basis are8:

<±1

2
|Hnuc

qq | ±
1

2
> = −3

eQVzz
12

(44)

<±3

2
|Hnuc

qq | ±
3

2
> = +3

eQVzz
12

(45)

<±3

2
|Hnuc

qq | ∓
1

2
> =

√
3 η

eQVzz
12

(46)

The full matrix reads:

EQ =
eQVzz

12

[+ 3
2 + 1

2 − 1
2 − 3

2 ]
3 0

√
3 η 0

0 −3 0
√

3 η√
3 η 0 −3 0

0
√

3 η 0 3

 (47)

One can find now the eigen vectors and eigen values of this matrix in the usual
way. The secular equation would be a fourth order polynomial. We can reduce
the complexity however just by making a rearrangement of the basis states in
the following way:

EQ =
eQVzz

12

[+ 3
2 − 1

2 − 3
2 + 1

2 ]
3

√
3 η 0 0√

3 η −3 0 0

0 0 3
√

3 η

0 0
√

3 η −3

 (48)

7Clearly, if η = 0 all cmI are zero except for one which equals 1.
8We note for a while | I, mI> as |mI>.
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In this notation we clearly see that the new eigen states will be combinations of
either | 3

2 , + 3
2 > and | 3

2 , −
1
2 > only, or | 3

2 , −
3
2 > and | 3

2 , + 1
2 > only. The prob-

lem is reduced now to finding the eigenvalues and eigenstates of two identical
smaller matrices (the secular equations will be twice a second order polynomial
here). We will see soon that this kind of reduction is a general property. Verify
that both submatrices have as eigen values:

Ea = E± 3̃
2

=
eQVzz

4

√
1 +

η2

3
(49)

Eb = E± 1̃
2

= − eQVzz
4

√
1 +

η2

3
(50)

As both eigenvalues appear twice in the full 4 × 4-matrix, we say they have a
multiplicity of 2.

3.2 Analytical example 1: I = 1

By a suitable rearrangement, we can write the full matrix – similarly to equa-
tion 48 – as follows:

EQ =
eQVzz

4

[+1 −1 0] 1 η 0
η 1 0
0 0 −2

 (51)

We immediately recognizes an eigenvalue E0̃ which is identical to the eigenvalue
EmI=0 for the case of axial symmetry, and which does not depend on η. The
eigen state belonging to E0̃ is identical to | 0>:

E0̃ = − eQVzz
2

| 0̃>= | 0> (52)

Non-axial symmetry will therefore not change this state.

The eigenvalues of the 2× 2 submatrix do depend on η:

E± =
eQVzz

4
(1± η) (53)

| ±> =
1√
2

(|+ 1> ± | − 1>) (54)

The difference

E+ − E− =
eQVzz

2
η (55)

is linear in η.
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3.3 Symmetry properties and classes

We observe the following two facts:

• The expectation values of | I, ±mI > are identical under Hnuc
qq . Indeed,

the following symmetry relations are valid:

<I, mI + 2| I2
+| I,mI> = <I, −mI − 2| I2

−| I,−mI> (56)

<I, mI | 3I2
z − I2| I, mI> = <I, −mI | 3I2

z − I2| I, −mI> (57)

and therefore:

<I, mI |Hnuc
qq | I, mI> = <I, −mI |Hnuc

qq | I, −mI> (58)

• Because Hnuc
qq connects only states with ∆mI = 0 and ∆mI = ±2, the

states can be divided in 2 classes, such that no state of one class can ever
be connected to a state of the other class. The situation is different for
integer and half integer spin:

– integer spin:

Class 1 : mI = even (59)

Class 2 : mI = odd (60)

– half integer spin

Class 1 : mI = −I, −I + 2, . . . , +
1

2
, +

5

2
, . . . , I − 1 (61)

Class 2 : mI = −I + 1, −I + 3, . . . , −1

2
, +

3

2
, . . . ,+I(62)

The existence of these two classes means that it is always possible to rearrange
the eigenstates in such a way that Hnuc

qq is in block form, because the block
form explicitly shows that only states belonging to the same class can be mixed.
In our two examples above, we did indeed observe that this was possible. The
situation is qualitatively different however for integer and half integer spin:

half integer spin: The number of states in both classes is the same, the two
submatrices have therefore the same dimension. Even better, by virtue of
the symmetry properties 56 and 57, both submatrices are identical9 The
states |mI > and | −mI > play exactly the same role, each for their one
submatrix.

Consider now an eigenstate |N1> of Hnuc
qq . It must be built from states

|mI> belonging to one and the same class, and according to equation 43
the coefficients cmI with mI belonging to the other class are zero. For half

9You can convince yourself about this by looking at 48, and by making the matrix for
I = 5/2. It is not necessary to write down explicit matrix elements, just use 56 and 57 to
identify identical ones.
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integer spin, mI and −mI belong to different classes. Therefore, if cN1
mI

appears in the development of |N1>, cN1
−mI must be zero. But because the

two submatrices are identical and because | ±mI > play the same role,
there must exist an eigenstate |N2> of Hnuc

qq built from the corresponding

states of the other class, with the same coefficients: cN2
−mI = cN1

mI and

cN2
mI = 0 = cN1

−mI .

Because |N1 > and |N2 > are eigenstates of identical submatrices, they
must have identical eigenvalues (-energies) and are therefore degenerate.
This reasoning does not depends on the value of η, and we can con-
clude: the eigenstates of Hnuc

qq for half integer I are two-fold degenerate
(Kramers-degeneracy). The degeneracy which was present for axial sym-
metry is never lifted for half integer spin.

integer spin: In this case, there will always be a different number of states
in each class. The two submatrices will have a different dimension and
can hence never be the identical. The states | ±mI > now belong to the
same class. Therefore there is no reason why they must lead to degenerate
states (although they still can do so). In general, the ±mI -degeneracy will
be lifted for integer spin.

If I becomes larger, the dimension of the submatrices grows and hence also the
degree of the secular equation. From I = 4 onwards, one deals with secular
equations of the fifth degree and higher. It is well known from algebra that
only for polynomials up to the fourth degree analytical formulae for their roots
exist. For higher orders numerical procedures are the only possibility. This
means that I = 7/2 is the highest spin for which the eigenvalues can be given
analytically (although already from I = 5/2 onwards the analytical solution
becomes quite involved). In fig. 1 the eigenvalues of Hnuc

qq (found either analyt-
ically or numerically) for some values of I are given as a function of η. Note the
Kramers degeneracy for half integer spin, and the fast lifting of degeneracy for
mI = ±1 (remember it was present already in first order perturbation theory!).
The larger |mI |, the higher η needs to be in order to produce a sufficiently large
splitting.

One can compare these pictures of fig. 1 to fig. 2 of the gravitational example.
There all possible orientations of the dumb-bell (= nucleus) were allowed. In the
quantummechanical case only a limited number of orientations remains, which
means that we must select a discrete number of energies from the continuous
range of fig. 2.
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Figure 1: Quadrupole splittings for half integer (top, 7/2, 5/2,
9/2) and integer (bottom, 2, 3, 4) spins. The vertical energy axis
is in units of eQVzz/I(2I − 1), while the horizontal axis scans all
possible values of the asymmetry parameter η (0→ 1).

Figure 2: See hyperfinecourse A: framework, Figure 9
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3.4 Symmetry properties of the electric-field gradient

For the magnetic hyperfine field we were able to identify where in a crystal such a
field can exist and what will be its direction, just by using symmetry arguments.
In the present section we will show how the crystallographic symmetry can be
used to identify sites where an electric-field gradient exists, and what is the
direction of the Z-axis of its PAS.

3.5 Theorem 1: an n-fold rotation axis

Consider a spherical tensor of rank 2 V 2 in an axis system S1. Its 5 compo-
nents V 2

q ′(S1) are related to the component V 2
q (S2) in an axis system S2 in the

following way:

V 2
q (S2) =

∑
q ′

D
(2)
q ′q (α, β, γ)V 2

q ′(S1) (63)

The quantities D
(2)
q ′q (α, β, γ) are components of the Wigner rotation matrix of

dimension 2 · 2 + 1 which can be found in tables. The angles α, β and γ are the
Euler angles which specify S2 with respect to S1.

Consider now a position in a crystal of whom the point group contains an n-fold
rotation axis. Imagine we know the 5 electric field gradient components in an
axis system S1 with its z-axis along the n-fold axis (n is a positive integer).
The components in an axis system S2 which is obtained by rotating S1 over an
angle 2π/n about the z-axis will be identical to the ones in S1:

V 2
q (S2) =

∑
q ′

D
(2)
q ′q

(
α =

2π

n
, 0, 0

)
V 2
q ′(S1) = V 2

q (S1) (64)

Because of the following property of the Wigner rotation matrix elements:

D
(2)
q ′q (α, 0, 0) = e−iqα δq ′q (65)

we find
e−iq

2π
n V 2

q (S1) = V 2
q (S1) or e−iq

2π
n = 1 (66)

and therefore
q = nk k = 0, ±1, ±2, ±3, . . . (67)

This leads to the following consequences:

• A 1-fold symmetry axis (n = 1)

Due to 67 with k = 0, ±1 and ±2 all 5 components of the electric-field
gradient tensor can be obtained.

• A 2-fold symmetry axis (n = 2)

Now only k = 0 and ±1 lead to the allowed q-values 0 and ±2. The
±1 components are missing. According to equations 13 or 15, the 2-fold
rotation axis might be chosen as the z-axis of a PAS.
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• A ‘3 or more’-fold rotation axis (n = 3, 4 or 6)

Here only k = 0 leads to an allowed q = 0, the other components are
missing. According to equation 15 the n-fold rotation axis can be chosen as
the z-axis of a PAS in which the electric-field gradient is axially symmetric
(η = 0).

We can summarize our first symmetry criterion as follows: if an electric-field
gradient can exist at a given position of which the point group contains at least
a 3-fold rotation axis, it will be axially symmetric about that axis. Note that the
proof does not use any properties of the lattice symmetry (space group), only of
the point group. This theorem is therefore valid also for atoms and molecules
(in the latter case also 5-fold and (n ≥ 6)-fold rotation axes are possible).

With this theorem we can finally understand the gravitational examples from
section 3 from hyperfinecourse A: framework. The axis system chosen for the
double ring was found in equation 57 (hyperfinecourse A: framework) to be
a PAS. Indeed, the z-axis is an n-fold rotation axis with n = ∞, and must
therefore according to our theorem be the z-axis of a PAS.

3.6 Theorem 2: a cubic environment

A second theorem is this one: whenever the point group contains more than 2
distinct (n ≥ 3)-fold rotation axes, the electric-field gradient at the center of
the point group is zero. A proof valid for molecules and solids goes as follows:
according to the first theorem, both rotation axes specify a PAS in which the
field gradient is axially symmetric. Only the V 2

0 -component can be different
from zero in both axis systems, and according to equations 64 and 66 the value
of V 2

0 is the same in both systems10. As there is freedom to choose the X-
and Y-axes in both systems, the relation between both non-zero components is
according to 63:

V 2
0 (S1) = D

(2)
00 (0, β, 0)V 2

0 (S2) V 2
0 (S1) = V 2

0 (S2) (68)

with the following explicit expression for the Wigner rotation matrix element
(P2(x) is the second order Legendre polynomial):

D
(2)
00 (0, β, 0) = P2(cosβ) =

3 cos2 β − 1

2
(69)

Equation 68 must hold for any value of V 2
0 and any value of β. This is possible

only if V 2
0 (S1) = V 2

0 (S2) = 0, which makes the electric-field gradient zero.

When we restrict ourselves to crystalline solids, only the cubic point group
contains the 2 required high-symmetry axes. Five different cubic point groups
exist:

10The same conclusion can be obtained by the cartesian form: because of the PAS, both
3 × 3-matrices are diagonal. They must have the same eigenvalues and |Vzz | must be the
largest. Therefore both matrices must be equal.
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Figure 3: a) One of the three tetrahedral point groups. b) One of
the two octahedral point groups.

• Tetrahedral point groups: These contain four 3-fold axes (and three 2-fold
axes). There are three tetrahedral point groups: 23, 4̄3m and m3̄ (T , Td
and Th respectively in Schönfließnotation). An example of 4̄3m is drawn
in fig. 3-a.

• Octahedral point groups: These contain four 3-fold axes and three 4-fold
axes. There are two species: 432 and m3̄m (O and Oh). An example of
432 is drawn in fig. 3-b.

In molecules also other point groups with the required symmetries can exist.

The inverse of the second theorem is not valid: if the field gradient appears
to be zero, this does not necessarily imply the existence of two (n ≥ 3)-fold
axes. An example of this situation is the the double ring of section 3 from
hyperfinecourse A: framework with

√
2R = h: an∞-fold axis and lots of 2-fold

axes are present, but no others. However, such situations will occur only in
molecules, not in solids.
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Figure 4: Body centered tetragonal (bct) crystal structure (a =
b 6= c).

3.7 Examples of electric-field gradients in solids

3.7.1 The EFG in bct-In

At room temperature, pure In is a silver-grey, soft metal. It has a body-centered
tetragonal lattice structure (space group I4/mmm, Fig. 4), with lattice constants
a=b=3.2523 Å and c=4.9461 Å. All atoms in this structure are equivalent, and
their point group is 4/mmm. This point group is lower than cubic, hence we
expect an EFG at the In-site. There is a 4-fold rotation axis, hence the PAS of
the EFG will have its Z-axis parallel to the 4-fold rotation axis, and there will
be axial symmetry: the choice of X- and Y-axes does not matter.

3.7.2 The EFG of Fe in Fe4N

Considering crystallographic symmetry only, one Fe-site (Fe-I) in this compound
has a tetragonal point group, the other Fe-site (Fe-II) has a cubic point group.
An EFG at the Fe nucleus is possible at the Fe-I site only. The point group
of the Fe-I site is the same 4/mmm as in the bct-In example, hence we know
immediately that the PAS of the EFG will have its Z-axis along the 4-fold
rotation axis, and that there will be axial symmetry. In contrast to the case
of bct-In, however, the orientation of this PAS is not the same for all Fe-I
atoms (even though they are equivalent!). Indeed, for two Fe-I atoms the 4-fold
rotation axis is parallel to the c-axis of the crystal, for two others it is parallel
to the b-axis and for the remaining two parallel to the a-axis.
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4 Miscellaneous topics

4.1 Ab initio calculations of the EFG tensor

The magnetic field at a nucleus could be separated into local contributions
(Fermi, orbital and spin-dipolar contributions) and more distant contributions
(Lorentz, demagnetizing and atomic-dipolar contributions). Each of the local
contributions could stem from s-, p-, d- or f-electrons. For the electric-field gra-
dient, the number of contributions is much smaller. In a mathematical descrip-
tion that is tailored to the so-called LAPW-method, the EFG can be divided
into a contribution from electrons that ‘belong’11 to the atom that contains the
nucleus under consideration, and a contribution from more distant electrons12.
Numerical calculations show the latter contribution to be extremely small. If
we want to get more physical insight in the origin of an EFG, the only thing
left to do is to see how local s-, p-, d- and f-electrons contribute to this EFG of
local origin. For this purpose, let us write the principal component Vzz of the
EFG in terms of the electron charge density ρe(~r):

Vzz = <ψ(0)
e | V̂zz|ψ(0)

e > (70)

=
1

4π ε0

∫
ρe(~r)

3 cos2 θ − 1

r3
d~r (71)

It is understood that the origin of the axis system (r=0) is at the nucleus
of interest. Very close to the nucleus, where r is small, we can expect a large
contribution to Vzz provided ρ(~r) is sufficiently large. However, near the nucleus
the electron density is small. We could also expect the region further away
from the nucleus where the highest electron density is, to be contributing most.
There however 1/r3 is small. For a long time, it has been unclear which of
both regions yield the dominant contribution. Only after sufficiently accurate
ab initio methods became available, it could be shown that the region of small
r is absolutely dominant, so dominant that contributions from charges at other
atoms are irrelevant (see the discussion about the formulation in the LAPW
framework given above, and the reference to P. Blaha given there). To illustrate
this, first define the following function:

Vzz(r) =
1

4π ε0

∫ |~r|=r
|~r|=0

ρe(~r)
3 cos2 θ − 1

r3
d~r (72)

Obviously, in the limit of large r we find back the definition of Vzz:

lim
r→∞

Vzz(r) = Vzz (73)

11Where one can put the boundary between this atom and neighbouring atoms is not
obvious. In the LAPW-method an exact definition is used for this boundary. One should not
attribute physical meaning to this boundary, however.

12 P. Blaha, K. Schwarz, and P.H. Dederichs, Physical Review B 37 (1988) 2792
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Figure 5: Illustrating which regions in space contribute to Vzz.
First column: the function ρe(r) from the integrand in equation 72
(without 1/r3). Second column: similarly, but with the factor
1/r3. Third column: this function integrated up to r, which is
equation 72. The arrows indicate the full calculated Vzz, includ-
ing the “lattice contribution” from distant atoms.

If one plots Vzz(r) as a function of r, then in many cases the full value of Vzz
is obtained already for r ≈ 0.2 Å, a distance that is 10 times smaller than the
radius of a typical atom. This function is plot for several pure hcp materials in
Fig. 5, and except for the very light Be atom the EFG is indeed of very local
nature.

Some warning words are appropriate here. We just concluded that the EFG
is of very local nature. In the literature, one can find at many places statements
like “the EFG is a very local property that is determined only by the first few
neighbour shells of atoms”. This is a statement that is not entirely true13, and

13It is a statement grown under the influence of the obsolete point charge model that will
be discussed in the next section.
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certainly completely different from the conclusion we just arrived at. It is true
that the EFG is a very local property: only the charge density in region inside
the atom and very close to the nucleus determines the EFG. The properties of
this part of the charge density, however, are determined by wider environment
of the atom under consideration. Chemical bonds with its first nearest neigh-
bours will have an influence on this local charge density. Chemical bonds of
these neighbours with their respective neighbours will have an influence as well,
through their effect on the properties of the nearest neighbours which will influ-
ence the bonds with the original atom, and so on. In this way, the local charge
density near the nucleus contains information on what is chemically happening
in a region of several Ångstroms around the central atom, typically 5 shells of
neighbours. That is still ‘local’ compared to a macroscopic scale, but a differ-
ent kind of locality than the 0.2 Å (=deeply within an atom) involved in the
relation between charge density and Vzz. These two concepts are often confused.

Which are now the electrons that most contribute to Vzz? Ab initio calcu-
lations have shown14 that the integral 71 can be separated15 in an integral over
ρpe, ρ

d
e and ρfe . For spd-materials, the contribution due to the valence p-electrons

is often dominant, even for transition metals that do not have native valence p-
electrons. For lanthanides and actinides, the f-contribution becomes dominant
if the f-electrons are localized.

Interestingly, these calculations show how a very old, intuitive model to under-
stand the EFG – the Townes-Dailey approximation16 – has a sound, physical
basis. In the Townes-Dailey model, one makes a so-called ‘asymmetry count’
of the orbitals of a state, taking care of the symmetry of that state. For in-
stance, the p-orbitals consist of 3 mutually perpendicular lobes (px, py and pz,
see Fig. 6). In a crystal with axial symmetry along the z-axis, the occupation
of px and py will be identical, and different from the occupation of pz. If the
occupation of pz – call this nz – is smaller than the occupation of px or py) –
call this nx = ny – then the overall p charge density will be oblate (Fig. 6). In-
tuitively, this corresponds to a negative Vzz. The ‘asymmetry count’ for p-states
is defined as

∆p =
nx
2

+
ny
2
− nz (74)

and is also negative. Ab initio calculations have shown that there is a fairly
good proportionality between this asymmetry count (where the ni come from
calculations) and an accurately calculated p-contribution to Vzz. If there is
charge accumulation along the Z-axis (prolate charge density), then nz is larger

14See the earlier reference to P. Blaha (1988), and also S. Cottenier, V. Bellini, M. Çakmak,
F. Manghi and M. Rots, Physical Review B 70 (2004) 155418, and references therein.

15Here we simplify a bit. In a correct mathematical treatment, the density can be split
according to so-called Gaunt numbers, of which the densities with the p-p, d-d and f-f Gaunt
numbers have the dominant contributions. These p-p density can be related to the density
due to p-electrons, and therefore we note it here immediately as ρpe .

16C.H. Townes and B.P. Dailey, Journal of Chemical Physics 17 (1949) 782
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Figure 6: Schematic picture of p-orbitals. When the occupation
in the xy-plane is dominant, the overall p-charge distribution is
oblate. If p-charge accumulates along the z-axis, the overall p-
distribution is prolate.

than nx = ny, and ∆p is positive. This is in agreement with the positive Vzz
that is expected. For a cubic environment, nx = ny = nz, such that ∆p = 0,
which is consistent with Vzz = 0 (by symmetry).

For d-electrons as well an asymmetry exists, and it is defined as:

∆d = nxy + nx2−y2 −
1

2
nxz −

1

2
nyz − nz2 (75)

For many years, ab initio calculations that could sufficiently accurately solve
for Vzz were not available. How to extract physical meaning from the measured
EFG’s then? An attempt to classify experimental data was the point charge
model. The underlying assumptions of this model are:

• The key feature of the EFG is the contribution from localized charges
at (neighbouring) atomic sites (‘lattice EFG’). [We know meanwhile that
such a contribution is negligible.] If an assumption for the value of these
localized charges (point charges) are made, the EFG due to them can be
obtained by a simple summation (see further).

• This lattice EFG gets amplified by the electron orbital of the atom under
consideration, who get deformed under the influence of the lattice EFG.
For every element, the effect of this deformation can be expressed by a
single scaling parameter (Sternheimer factor). [We know meanwhile that
the hope for the existence of such a single parameter is unjustified: Nature
is much more complicated ]
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Although the point charge model is incorrect and obsolete, it has been used
a lot in the past and you should know how what it is about in order to un-
derstand the older literature. Below, the point charge model is explained in
more detail. A critical analysis of one the failures of this model – together with
the better ab initio interpretation – is given in S. Jalali Asadabadi, S. Cotte-
nier, H. Akbarzadeh, R. Saki and M. Rots, Physical Review B 66 (2002) 195010.

Consider the nucleus of an ion, the latter having initially a spherically symmet-
ric electron cloud (as a free ion). Put this ion at a site with lower-than-cubic
symmetry in a solid. Due to this low symmetry, the positions of the neighbour-
ing ions are such that they must generate an EFG at the nucleus of interest.
Because these neighbours are outside the electron cloud of the ion, we call the
principal component of this field gradient V ext

zz . The electron cloud of the con-
sidered atom makes bonds with the neighbours. It gets therefore deformed,
looses its spherical symmetry and takes the same symmetry as the neighbour-
hood has. This causes an extra field gradient at the nucleus with the same PAS
as the external contribution. We can hence write the total field gradient as the
external contribution times a factor:

Vzz = (1− γ∞)V ext
zz (76)

If γ∞ is zero, the own electron cloud is not deformed. In many cases γ∞ is
considerably larger then 1 and negative, which means a strong net amplification
of V ext

zz . For this reason, γ∞ is called the Sternheimer antishielding factor. It is
a property which depends only on the considered atom of ion, and reflects the
latter’s reaction to an external field gradient. A table with calculated values
(Hartree-Fock calculations) for a lot of ions can be found in F.D. Feiock and
W.R. Johnson, Physical Review 187 (1969) pp. 39. Some examples for impor-
tant atoms are: Fe: -5.244, Sn: -22.34, Cd: -29.27.

Often situations occur where a nonspherical charge distribution is present within
the electron cloud of the considered atom. In an ionic solid, insulator or semi-
conductor, this can happen for instance due to a not completely filled 4f-shell.
In metals it can be due to conduction electrons penetrating into the atomic
volume. In both cases this will yield an internal (to the atom) or local field gra-
dient with principal component V loc

zz . It will again take over the symmetry of
the existing (1− γ∞)V ext

zz and have therefore the same PAS. The other electrons
inside the atomic volume will be deformed by this internal charge distribution,
and change the original V loc

zz . Now the change is described by a parameter R,
which appears to be rather small ( -0.2 ≤ R ≤ +0.2), and the total principal
component becomes:

Vzz = (1− γ∞)V ext
zz + (1−R)V loc

zz (77)
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It is quite straightforward to get a meaningful number for V ext
zz . The neighboring

nuclei screened by their electron cloud will appear from a certain distance as
point charge ∆e, where ∆ is the extra number of electrons being at the ion. In
ionic solids, ∆ is an integer (positive or negative), in metals it is a fractional
number. From the result for the gravitational example, we obtain the electric-
field gradient tensor for a single point charge ∆e at a position ~r from the nucleus
(−Gm2 → ∆e/4πε0, ρ2(~r2) → δ(~r2 − ~r)) in cartesian coordinates17. Summing
over all ions in the crystal gives:

V ext =
e

4π ε0

∑
i

∆i

r3
i


3x2
i

r2
i

− 1 3xiyi
r2
i

3xizi
r2
i

3xiyi
r2
i

3y2i
r2
i

− 1 3yizi
r2
i

3xizi
r2
i

3yizi
r2
i

3z2i
r2
i

− 1

 (78)

It is of course not possible to extend the summation really to all ions in the crys-
tal. Usually one calculates first all the matrices due to the first nearest neigbors,
then of the second neighbor shell, and so on. As ri becomes larger, the contri-
butions become smaller and smaller, and the sum will converge. Convergence
is very slow however, because shells far away will usually contain many atoms.
Short-cuts exist to obtain with less effort (= faster convergence) the same final
matrix18, and for some types of lattices even analytical expressions exist19.

Anyway, after having found the matrix for V ext – in this context called also
often V latt , latt from lattice – one can find its PAS by doing a matrix diagonal-
ization. After suitably renaming the axes, one obtains finally a value for V ext

zz .
If one is interested only in the PAS and not in the magnitude of Vzz, then it is
sufficient to carry out the summation in 78 only over as many neighbors as is
needed to obtain the symmetry of the point group, and do the diagonalization
of this matrix.

Because γ∞ is known from tabulations, we have now a procedure to obtain
the external (or lattice) contribution to the electric-field gradient. Such a trans-
parent method does not exist for the local contribution however. Based upon
the then available experimental data, Raghavan et al.20 concluded in 1975 that

17Point charges cannot occur at the same position of the nucleus, the correction term with
ρe(~0) is therefore zero.

18F. W. De Wette, The Physical Review 123 (1961) p. 103, F. W. De Wette and G. E.
Schacher, The Physical Review 137 (1965) p. A78 and p. A92, and D. B. Dickmann and G.
E. Schacher, Journal of Computational Physics 2 (1967) p. 87.

19For instance, for the Cu-position in a AuCu3-type of structure, one can prove that

V ext = V latt =
e 8.67

4πε0 a30
(∆Au −∆Cu ) (79)

with a0 being the lattice constant. (G.P. Schwartz and D.A. Shirley, Hyperfine Interactions
3 (1977) 67)

20R. S. Raghavan, E. N. Kaufmann and P. Raghavan, Physical Review Letters 34(20) (1975)
p. 1280
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the local contribution in metals (here the local contribution is due to conduction
electrons) is proportional to the antishielded lattice contribution and has the
other sign, the universal proportionality constant −K being about -3:

(1−R)V loc
zz = Vzz − (1− γ∞)V latt

zz = −K (1− γ∞)V latt
zz (80)

and hence
Vzz = (1−K) (1− γ∞)V latt

zz (81)

This ‘universal correlation’ with the data set of Raghavan et al. is shown in
fig. 7-a. In later experiments21 many exceptions to this plot have been found
(for instance by Enrst et al.22, fig. 7-b), making the proportional behaviour far
less universal as was once thought. Fig. 7-c shows the available data set in 1983
(R. Vianden).

21See R. Vianden, Hyperfine Interactions 15/16 (1983) 189-201 for a discussion, and R.
Vianden, Hyperfine Interactions 35 (1987) 1079-1118 for a tabulation of many more electric-
field gradient measurements.

22H. Ernst, E. Hagn, and E. Zech, Physical Review B 19 (1979) 4460-4469
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Figure 7: Pictures of pretended correlations between the total
electric-field gradient and the point-charge lattice contribution
(with their original captions), with data sets available in 1979 [a):
Raghavan, b): Ernst] and 1983 [c): Vianden]. See text for detailed
references.
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4.2 Temperature dependence of the electric-field gradient

Up to now we did not mention temperature. In almost all cases, the electric-field
gradient lowers when the temperature raises. Fig. 8 shows Vzz as a function
of temperature for Cd(Cd), Sn(Cd), and Ru(Cd). The kind of temperature
dependence is not the same in all classes of materials however. Regular spd-
compounds follow a T 1.5-law:

Vzz(T ) = Vzz(0)
(
1−BT 1.5

)
(82)

There is no formal justification for the exponent 1.5 and actual values may differ
from 1.5 slightly. The factor B has the order of magnitude of 10−4−10−5K−1.5.
It is highly surprising that so many cases – equation 82 holds equally well for
pure compounds as for the field gradient on impurities – can be described by
such a simple formula, which contains only a single free parameter (Vzz(0) is
trivial).

In materials with f-electrons, the temperature dependence is linear:

Vzz(T ) = Vzz(0)
(
1−BT 1

)
(83)

Broad studies do not exist, but it seems this linear behaviour remains even if
the electric-field gradient is measured at a position where no f-atom sits, as the
field gradient on 111Cd on the Sn-position in USn3.

The final picture to understand these temperature dependences at a fundamen-
tal level has not yet been worked out. Of course, the field gradient must become
smaller if the lattice expands. This effect is too small however to explain the ob-
served temperature variation. Next, one could think about an electronic effect.
The higher the temperature is, the more electrons are thermally excited. The
bonds which were sharply defined at 0K become hence more and more blurred.
‘Blurred’ means that spherical symmetry of the electron cloud is more and more
restored, and the electric-field gradient will therefore become smaller. But the
temperatures needed for this to be an observable effect are orders of magnitude
higher than the temperature range of fig. 6-7***. The only remaining possibil-
ity is the influence of lattice vibrations (phonons), which indeed are important
in the range of 0 - 1000 K. The fact that for impurities in a host-lattice the ob-
served B correlates with the Debye-temperature of the host is an experimental
support for this. The final theory to describe Vzz(T ) will therefore have to deal
with phonons in an accurate way (An early and rather successful model for the
electron-phonon coupling can be found in P. Jena, Physical Review Letters 36
(1976) 418-421 and in D. R. Torgeson and F. Borsa, Physical Review Letters 37
(1976) 956-959. Other references can be found in E. N. Kaufmann and R. J.
Vianden, Review of Modern Physics 51(1) (1979) p. 161, in W. Witthuhn and
W. Engel in Hyperfine Interactions of Radioactive Nuclei, ed. J. Christiansen,
pp. 205-280, 1983, Springer-Verlag, ISBN 3-540-12110-2, in R. Vianden, Hy-
perfine Interactions 15/16 (1983) 189-201, and H. C. Verma and G. N. Rao,
Hyperfine Interactions 15/16 (1983) 207-210.).
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Figure 8: T-dependence of Vzz(T )=Vzz(0)(1-BTα) (solid lines are
fits through the experimental values) for Cd(Cd), Sm(Cd), and
Zr(Cd). Phys. Rev. B (2006) 144304
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5 Combined interaction

We are ready now to combine the results of this document and the previous one
and study the interaction between a nucleus and a magnetic field and electric-
field gradient that are present simultaneously. We will discuss the case of solids
only. The general solution of this problem is complex, and we will restrict
ourselves to a few manageable cases. Cases which are not treated are explicitly
mentioned, in order to indicate clearly what is missing here. An important
note to make is that a lot of steps use formulas not previously discussed23.
As the online course only goes briefly over this subject (and not in a strong
mathematical way whatsoever), it is more important to understand the different
cases than to follow the mathematics behind them.

5.1 General formulation

Consider a nucleus with angular momentum I ≥ 1, observable magnetic dipole
moment µ (or alternatively, g-factor g), and observable electric quadrupole mo-
ment Q. Both µ (or g) and Q can be either positive or negative. This nucleus is

inside a solid, and feels a magnetic field ~B(~0) and an electric-field gradient ~V (~0)
that are fixed with respect to the crystal lattice. The crystal is described in an
axis system that is fixed with respect to e.g. the experimental apparatus that is
used to study the nucleus, and is therefore sometimes called the LAB-system.
Our static ~B(~0) can be described in this LAB-system by 3 components Bx, By
and Bz. There will be a PAS in which ~B(~0) has only one non-zero component.

In order to specify ~V (~0) with respect to the LAB-system, 5 components are
needed. Equation 11 shows that also here a PAS can be chosen such that only 3
non-zero components remain (with only 2 degrees of freedom). The description

of ~B(~0) and ~V (~0) is simplest in their PAS, but these two PAS in general do not
coincide. We will have to choose one of them, and accept the complications for
the other interaction which we cannot describe in its PAS.

As we assume ~B(~0) and ~V (~0) to be known quantities, we can again formulate a
nuclear Hamiltonian. Diagonalization of the matrix of its matrix elements will
lead to the eigenvalues and eigenstates. The general nuclear magnetic Hamilto-
nian in an axis system not necessarily being the PAS associated with ~B(~0):

Ĥnuc
jj = − gIµN

h̄
~B(~0) · ~̂I (84)

The corresponding quadrupole hamiltonian we calculated up to now only in the
PAS of the field gradient, in equation 41. By equations 3, 37 and 25 to 27 we
can obtain the spherical form in a general axis system:

Ĥnuc
qq =

eQ

2I(2I − 1)h̄2

[(
3Î2
z − Î2

)
<V 2

0 >

23We are not talking about derivations but about e.g. certain transformation formulas.
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∓
√

3

2

(
Îz Î±1 + Î±1Îz

)
<V 2
±1> +

√
3

2
Î2
± <V

2
±2>

]
(85)

with
〈
V 2
q

〉
=
〈

Ψ
(0)
e

∣∣∣ V̂ 2
q

∣∣∣Ψ(0)
e

〉
.

The general problem is now to find the nuclear eigen states and eigen values of
Ĥnuc

jq = Ĥnuc
jj + Ĥnuc

qq . We will solve this problem in a few special cases.

6 Dominant quadrupole interaction

We first focus on the case where the quadrupole interaction is dominant. ‘Dom-
inant’ means that if both interactions would act alone, ∆Enuc

qq is much larger
than ∆Enuc

jj (equivalently: ω0 � ωL). It is a natural choice then to take
the PAS of the electric-field gradient as reference system. If exact calculations
would appear to be impossible, the magnetic interaction can be considered to
be a perturbation to the quadrupole interaction.

6.1 The collinear case

6.1.1 Axial symmetry

This is the most simple case, and can be solved exactly: ~B(~0) is parallel to the z-
axis of the PAS of the electric-field gradient, the latter being axially symmetric.
This z-axes of both PAS coincide, and for none of them the choice of x- and
y-axes matters, such that both PAS can be chosen to be identical. Under these
circumstances, 84 reduces to eq. 31 from hyperfinecourse A: magnetic hyperfine
interaction, and 85 to 41 with η = 0:

Ĥnuc
jq =

eQVzz

4 I(2I − 1) h̄2 (3Î2
z − Î2) − gIµN

h̄
B(~0) Îz (86)

This hamiltonian is already diagonal in the | I, mI>-basis, with eigenvalues:

Enuc
jq (mI) =

eQVzz
4 I(2I − 1)

(3m2
I − I(I + 1)) − gIµNBmI (87)

= h̄ωQ (3m2
I − I(I + 1)) + h̄ωLmI (88)

The energy level scheme for I = 5/2 is given in fig. 7-1*** for QVzz > 0 and
gIB < 0. This scheme inverts whenever QVzz or gIB changes sign. The ±mI

degeneracy from the quadrupole-only case is lifted.

Equation 87 is an exact solution, and does not depend on EM being small
with respect to EQ. It even holds equally well for the case with dominating
magnetic interaction.

Let us examine what happens if one increases B. For particular field strengths,
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some energy levels will coincide. From 87 you can derive that EQM (mI) =
EQM (m ′I) if:

ωL
ωQ

= − 3 (mI +m′I) (89)

Apparently, for a given ωQ several ωL exist for which this condition holds (fig.
7-2***). For instance, for the situation given in fig. 7-1***, the first coincidence
will obviously happen for the levels mI = −3/2 and mI = +1/2. This will
be if ωL/ωQ = 3. Such crossings of two levels are crucial for the Level Mixing
Resonance method, a method which is especially useful to measure hyperfine
interaction energies when combined interactions are present.

6.1.2 No axial symmetry

If ~B(~0) and ~V (~0) are collinear, but without axial symmetry for ~V (~0), we are
in a situation much similar to section 3.3 from hyperfinecourse A: magnetic
hyperfine interaction. We will have the complexity of the non-zero non-diagonal
elements, which are exactly the same however as in said section. Only the
diagonal elements are changed, due to an additional term from the magnetic
interaction. Finding the eigen values will proceed along the same scheme as
presented in said section. For half-integer I, if B is sufficiently small a Zeeman-
splitting of the degenerate ±mI levels will show up. For integer I, almost
degenerate levels will Zeeman-split too, and non-degenerate levels will change
their mutual distance a little (increase or decrease).

6.2 The non-collinear case

6.2.1 Axial symmetry

Now consider an axially symmetric quadrupole interaction, being much stronger
than a magnetic interaction and not collinear with it. The PAS of the mag-
netic hyperfine field can be specified with respect to the PAS of the electric-field
gradient by the Euler angles (α, β, γ). α is an orientation about the direction
of axial symmetry of the electric-field gradient. Due to this axial symmetry,
α should not matter and we can choose the X- and Y-axis of the electric-field
gradient PAS such that α = 0. Similarly, γ is a rotation about the direction
of the magnetic hyperfine field, which is always a direction of axial symmetry
because the hyperfine field is a vector. We can choose the X’- and Y’-axis of
the magnetic PAS such that γ = 0. Hence, a simplified set of Euler angles that
specifies the magnetic PAS with respect to the electric PAS is (0, β, 0).

We will work in the electric PAS, and therefore we should express the mag-
netic hyperfine field in the electric PAS. The latter plays the role of the ‘new’
axis system in the transformation, such that in order to transform, we should
know the Euler angles that specify the electric PAS with respect to the magnetic
PAS. These are (0, −β, 0). In the ‘old’ (magnetic) axis system, the cartesian
components of the magnetic hyperfine field are (0, 0, B). The corresponding
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spherical tensor that describes the hyperfine field in the magnetic PAS has only
one non-zero component: B1

0 = B. Three components in the electric PAS are:

B1
q (β) = D1

0q(0,−β, 0)B1
0 (90)

= (−1)q
√

4π

3
B Y 1

q (−β, 0) (91)

Explicit expressions are:

B1
0(β) = B cosβ (92)

B1
±1 = ∓ B√

2
sinβ (93)

The spherical form of the nuclear angular momentum operator ~̂I =
(
Îx, Îy, Îz

)
,

is :

Î1
0 = Îz (94)

Î1
±1 = ∓ 1√

2
Î± (95)

Working out the dot product in equation 84 but using spherical components,
we find the desired expression:

Hnuc
jj (β) = − gIµNB

h̄

(
1

2
sinβ

(
Î+ + Î−

)
+ cosβ Îz

)
(96)

The combined hamiltonian Hnuc
jq is not diagonal any more in the | I, mI> basis.

The non-zero matrix elements depend on β and are:

〈I, mI |Hnuc
jq (β) |I, mI〉 = h̄ωQ

(
3m2

I − I(I + 1)
)

+ h̄ωLmI cosβ (97)

〈I, mI |Hnuc
jq (β) |I, mI ± 1〉 =

h̄ωL
2

sinβ
√
I(I + 1)−mI(mI ± 1) (98)

Due to the off-diagonal matrix elements, the | I, mI>-states are no eigen states
any more. In our first order perturbation procedure where Hnuc

jq is the perturb-
ing Hamiltonian (with Vzz and B the small parameters) with respect to the
dominant monopole Hamiltonian, the following matrix must be diagonalized in
order to find the new eigen states (I = 5

2 as an example):

+ 5
2 + 3

2 + 1
2 −

1
2 −

3
2 −

5
2

qj j 0 0 0 0
j qj j 0 0 0
0 j qj j 0 0
0 0 j qj j 0
0 0 0 j qj j
0 0 0 0 j qj


(99)
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The symbol ‘qj’ indicates a contribution due to Hnuc
qq and Hnuc

jj simultaneously,
the symbol ‘j’ a contribution due to Hnuc

jj only.

If the quadrupole interaction is dominant, we can apply first order perturbation
theory a second time. We can take the monopole Hamiltonian plus Hnuc

qq as the
unperturbed Hamiltonian, and Hnuc

jj as the perturbation with B as the small
parameter (B � Vzz ). Under the unperturbed Hamiltonian, the ±mI states are
degerate: [

〈mI |Hnuc
jj |mI〉 〈mI |Hnuc

jj |−mI〉
〈−mI |Hnuc

jj |mI〉 〈−mI |Hnuc
jj |−mI〉

]
(100)

For mI = 5
2 and mI = 3

2 , this is a diagonal matrix: the eigenstates are un-
changed, and the degenerate eigenvalues split (their separation is 2h̄ωLmI cosβ).
For mI = 1

2 , the matrix is not diagonal:

h̄ωL
2

[
cosβ k sinβ
k sinβ − cosβ

]
(101)

with k =
√
I(I + 1) + 1

4 . It is left as an exercise to diagonalize this and find

the separation between the two levels.

Note finally that when ~B(~0) is perpendicular to the Z-axis of the PAS of the
quadrupole interaction and small, the energies in first order are unaffected, ex-
cept for mI = ± 1

2 .

6.2.2 No axial symmetry

We do not deal with the case of a dominant non-axially symmetric quadrupole
interaction combined with a non-collinear magnetic interaction. Note only that
now matrix elements with ∆mI = ±1 and ∆mI = ±2 are present in the
| I, mI>-basis.
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7 Dominant magnetic interaction

7.1 The collinear case

7.1.1 Axial symmetry

We already dealt with this case, as the axially symmetric quadrupole interaction
with collinear magnetic interaction was solved exactly, irrespective of the relative
strength of both interactions.

7.1.2 No axial symmetry

This will not be discussed.

7.2 The non-collinear case

7.2.1 Axial symmetry

If the Z-axis of the PAS of a small electric quadrupole interaction is not parallel
to the Z-axis of the PAS of a large magnetic interaction, we better take the
latter PAS as our reference frame, and express the quadrupole interaction in
this axis system. The magnetic hamiltonian of equation 84 simplifies to:

Ĥnuc
jj = − gIµN

h̄
B Îz (102)

while the quadrupole hamiltonian is given in 85. The magnetic PAS is our fi-
nal reference system here, and the orientation of the electric PAS with respect
to the magnetic PAS is specified by the Euler angles (α, β, γ). For the same
reasons as in section 6.2.1, the axes can be taken such that α and γ are zero,
without loosing generality24. We will not make this choice, however. We will
start out with general values for all three Euler angles, in order to demonstrate
that – with somewhat more work – the α- and γ-dependence will disappear
spontaneously from the equations.

First we transform the single non-zero component of the electric-field gradi-
ent tensor from its PAS to the magnetic PAS. In order to do so, we need the
Euler angles that specify the magnetic PAS with respect to the electric PAS:
(−γ, −β, −α). The transformed components are:〈

V 2
q

〉
M

= D
(2)
0q (−γ, −β, −α)

〈
V 2

0

〉
E

(103)

= d2
0q(−β) eiqα

〈
V 2

0

〉
E

(104)

=
(−1)q

2

√
4π

5
eiqα Y 2

q (−β, 0)Vzz (105)

(the subscripts M and E indicate components in the magnetic and electric PAS,
respectively). The γ-dependence has already disappeared. Now, fill this out in

24Note that α and γ are not the same angles as in section 6.2.1: α is now a rotation about
the magnetic hyperfine field.
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equation 85 in order to find the quadrupole hamiltonian in the magnetic PAS
as a function of Vzz, α, and β:

Hnuc
qq =

eQVzz

4I(2I − 1)h̄2

3 cos2 β − 1

2

(
3Î2
z − Î2

)
︸ ︷︷ ︸

â ′

+

√
3

2
sinβ cosβ

(
Îz Î±1 + Î±1Îz

)
︸ ︷︷ ︸

b̂±

e±i α +

√
3

8
sin2 β Î2

±︸ ︷︷ ︸
ĉ±

e±2i α

(106)

The matrix elements of the total hamiltonian Hnuc
jj + Hnuc

qq in the | I, mI >-
basis, now depend on β and α (to simplify notation, assume we are dealing with
I = 2):

H(α, β) =
eQVzz

4I(2I − 1)h̄2


a b+ e

iα c+ e
2iα 0 0

b− e
−iα a b+ e

iα c+ e
2iα 0

c− e
−2iα b− e

−iα a b+ e
iα c+ e

2iα

0 c− e
−2iα b− e

−iα a b+ e
iα

0 0 c− e
−2iα b− e

−iα a


(107)

with a the appropriate matrix element of â, etc. The symbol a is chosen such
that the magnetic interaction is correctly incorporated:

â = â ′ − gI µN B 4I(2I − 1) h̄

eQVzz
Îz (108)

This matrix contains both the magnetic and electric interaction in the diagonal,
only the electric interaction in the two side diagonals, and zeros elsewhere. Fur-
thermore, the symbols a, b± and c± depend on β, but not on α. Diagonalization
yields the eigenvalues and eigenvectors. This diagonalization can be achieved
by a suitable unitary transformation25:

Hd(β, α) = U(β, α)H(β, α)U−1(β, α) (110)

where Hd is diagonal in the new basis, and U is a unitary matrix. Next we prove
that U(β, α) can be factorized into a β- and a α-dependent matrix: U(β, α) =
U ′(β)A(α). Indeed, one can apply the following unitary transformation which
leaves a matrix H ′(β) depending not on α any more:

H ′(β) = A(α)H(β, α)A−1(α) (111)

25A unitary transformation of the square matrix B is defined as the operation needed to
obtain another square matrix A by

A = U B U−1 (109)

with U being a unitary matrix, i.e. U† = U−1. (U† is the conjugate transpose of U).
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a b+ c+ 0 0
b− a b+ c+ 0
c− b− a b+ c+
0 c− b− a b+
0 0 c− b− a

 = A(α)


a b+ e

iα c+ e
2iα 0 0

b− e
−iα a b+ e

iα c+ e
2iα 0

c− e
−2iα b− e

−iα a b+ e
iα c+ e

2iα

0 c− e
−2iα b− e

−iα a b+ e
iα

0 0 c− e
−2iα b− e

−iα a

 A−1(α)

A(α) =


e2iα 0 0 0 0

0 eiα 0 0 0
0 0 1 0 0
0 0 0 e−iα 0
0 0 0 0 e−2iα

 (112)

In general, A(α) is constructed such that its diagonal runs from eIiα till e−Iiα.
As H ′(β) does not depend on α, the unitary matrix U ′(β) needed to transform
it into Hd will also be β-dependent only. And as an immediate consequence,
Hd(β) and its eigenvalues will not depend on α too. The complete unitary
transformation looks like:

Hd(β) = U ′(β)A(α)︸ ︷︷ ︸
U(β, α)

H(β, α) A−1(α)U ′−1(β)︸ ︷︷ ︸
U−1(β, α)

(113)

In this way we formally proved that for an axially symmetric electric-field gradi-
ent, the eigenvalues of the combined interaction do not depend on α, a property
which we said in the beginning was intuitively obvious.

Up to now, we did not require the electric interaction to be small. If we do so, we
can use first order perturbation theory, and examine how the magnetic energy
levels will change under the influence of the electric interaction. The eigenstates
of the unperturbed (=magnetic) hamiltonian are the | I, mI>-states, the energy
corrections Ec are:

Ec = < I, mI |HQ| I, mI> (114)

= h̄ωQ
3 cos2 β − 1

2

(
3m2

I − I(I + 1)
)

(115)

If β = 0◦, we retrieve the exact expression for the collinear case we found previ-
ously. The distance between ±mI -levels remains always constant, unregardless
the perturbation. There is also a so-called ‘magic angle’ βm ≈ 54.74◦ for which
3 cos2 βm − 1 = 0: for this angle, the original magnetic levels are not changed
in first order.

7.2.2 No axial symmetry

And this one we skip again.
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8 None of both interactions dominant

Let us finally sketch how to treat the most general case, where none of both
interactions is dominant, where the orientation of the Z-axes of both principle
axis systems is arbitrary and where the electric-field gradient may have no axial
symmetry. Most of the procedure we can copy from previous reasoning.

It does not matter which of both axis systems we take, assume we work in
the PAS of the magnetic interaction and specify the electric PAS with respect
to this magnetic PAS by Euler angles (α, β, γ). We can transform the electric-
field gradient from its PAS to the magnetic PAS (for which you have to use
the Euler angles (−γ, −β, −α)). Contrary to equation 103, the electric-field
gradient has V 2

0 and V 2
±2 as non-zero components in its PAS (below indexed

by P). The 5 components in the general axis system (below indexed by G) will
therefore all depend on both Vzz and η:

<V 2
q >G = D2

0q <V
2
0 >P +D2

2q <V
2
2 >P +D2

−2q <V
2
−2>P (116)

= d2
0q(−β)eiqα <V 2

0 >P + ei2γd2
2q(−β)eiqα <V 2

2 >P + e−i2γd2
−2q(−β)eiqα <V 2

−2>P

(117)

Note that the angle γ (rotation about the electric-field gradient principal axis)
does not disappear now. The 5 explicit expressions are (Vzz and η are with
respect to the PAS of the electric-field gradient):

<V 2
0 >G =

1

4

√
5

π
Vzz

(
3 cos2 β − 1

2
+
η

2
cos 2γ sin2 β

)
(118)

<V 2
±1>G =

1

8

√
5

3π
Vzz sinβ e±iα

(
±3 cosβ +

√
1

2
η
[
e−i2γ(1∓ cosβ)

−e+i2γ(1± cosβ)
])

(119)

<V 2
±2>G =

1

16
Vzz

√
30

π
e±i2α

(
sin2 β +

η

6

[
ei2γ(1± cosβ)2

+e−i2γ(1∓ cosβ)2
])

(120)

The matrix formed by the matrix elements will have the same structure as we en-
countered in the case with dominant magnetic interaction and axial symmetry,
and in exactly the same way the α-dependence can be removed. The eigenvalues
will hence depend on γ and β, contrary to the case with axial symmetry. No
perturbation theory can be applied now, and therefore the full diagonalization
by searching the suitable unitary transformation has to be performed. With
some writing effort, you can write down explicitly the matrix elements for in-
stance for I = 3/2. You will see that they are complex if η 6= 0.

It can be proven also that some mutual orientations of magnetic and electric
interactions yield the same eigenvalues.
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9 Examples

9.1 Fe4N

The ferromagnetic compound Fe4N was discussed already in sections hyper-
finecourse A: magnetic hyperfine interaction 5.1 and 3.7.2, where we have seen
that at the Fe-I sites both a hyperfine field and an electric-field gradient are
present. Experimental values are about 25 T for the hyperfine field, and 2.9·1021 V/m2

for Vzz. If we would measure26 this interaction with the first excited nuclear
level of the 57Fe isotope (I=3/2, gI=-0.1553 µN , Q=0.16 b), then the ratio
ω0/ωL = 0.09: we are in the situation with dominant magnetic interaction. If
the magnetic moments are along the (001) direction, then the angle between
the Z-axes of the magnetic and electric PAS is 0◦ for 2 out of 6 Fe-I atoms
(Fe-Ia), while it is 90◦ for the other 4 (Fe-Ib). Fe-Ia can be treated with the
exact equations from section 7.1, while for Fe-Ib the perturbation approach from
section 7.2 can be used (it would be a good illustration to compare the energies
of the 4 m-levels in both cases).

With the moments along the (111) direction, the angle between both Z-axes
is the magic angle of 54.74◦ for all 6 Fe-I atoms, and we should use the formulae
from section 7.2. Verify that the levels are identical to the Zeeman splitting
from a pure magnetic interaction.

10 Epilogue

Congratulations, you have reached the end of part A. I hope you had as much
fun as I did making these documents. I would like to thank S. Cottenier and
M. Rots for the initial syllabus on which these documents are based. S. Cot-
tenier deserves extra thanks for correcting and steering these documents where
needed. N. Steyaert gets my appreciations for his emotional support.

That will be all. Have fun in the next section where we learn the practical appli-
cations of these tiny energy differences. And good luck in your physics/engineering/...
futures.

PS I didn’t make the same kind of documents for part B as I am more in-
terested in the theory (part A) than the applications. This does not mean that
they aren’t as important, certainly in our daily lives. I hope these documents
inspire and give some other students the courage to do the same for part B.

26This is almost what happens in a Mössbauer experiment, although there also the ground
state I=1/2 level plays a role.
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