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Abstract

This document is meant for optional background reading when study-
ing www.hyperfinecourse.org. It deals with one of the chapters of this
course. The formal course content is defined by the website and videos.
The present document does not belong to the formal course content. It
covers the same topics, but usually with more mathematical background,
more physical background and more examples. Feel free to use it, as long
as it helps you mastering the course content in the videos. If you prefer
studying from the videos only, this is perfectly fine.

The present text has been prepared by Jeffrey De Rycke (student in
this course in the year 2018-2019). He started from a partial syllabus
written by Stefaan Cottenier for an earlier version of this course, and
cleaned, edited and elaborated upon that material. That syllabus was
itself inspired by a course taught by Michel Rots at KU Leuven (roughly
1990-1995).
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1 VIP-1

This section will deal with the logical build up of VIP-1. It will cover the same
”ladder” model the video has, but each step will be explained more in details.
We will start from how we used to describe basic atoms. Then work our way
down from high energy level splitting (excited nuclei), to the energy levels of the
excited electrons, to the L-S coupling (fine splitting), all the way to hyperfine
splitting.

1.1 Approximations of Basic Nuclei

To describe the H (or even the He atom) we made some basic approximations
to make the calculations feasible, these approximations were will be described
in short.

1.1.1 Non-relativistic

The non-relativistic quantum mechanical equation for the hydrogen atom (and
for any other quantum system) is the Schrödinger equation. Its relativistic
analogue is the Dirac equation. To first order in v2/c2, the Dirac equation can
be approximated by the Schrödinger equation plus three extra terms. Those
terms represent the most important relativistic effects. They are:

• The mass-velocity effect. The dependence of the electron mass on the
electron velocity causes altered orbits for high-speed electrons (= the ones
closest to the nucleus).

• The Darwin effect. In relativistic quantum physics, the electron can be
shown to execute extremely fast random movements over a short length
scale, known as the zitterbewegung 1. Therefore, the electron experiences
the Coulomb potential by the nucleus as somewhat smeared out, which
slightly changes the energy levels of the hydrogen and other atoms.

• Spin-orbit coupling. The orbit of an electron (and hence the energy of both
the electron and the atom) does not depend only on the electromagnetic
interaction of its charge with the charge of the nucleus, but also on its spin:
the electron’s orbital motion generates a magnetic field, that interacts
with its spin magnetic moment. This interaction between spin and orbit
is called spin-orbit coupling. Because spin-orbit coupling – and therefore
spin – naturally shows up in the Dirac theory, spin can be understood as
being a relativistic effect.

1This should not be confused with one of the Heisenberg uncertainty principles, which is
present already in non-relativistic quantum physics.
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1.1.2 Effective Electron-Electron Interactions

When having multiple electrons, solving the electron-electron interactions is ex-
ceedingly difficult. Solving the Hamiltonian directly (by expanding the many-
electron wave function into a linear combination of Slater determinants) becomes
unfeasible as one needs many Slater determinants when the amount of electrons
grows and one wants a reasonable accurate solution.

A solution to this is identifying a subspace of the full Hilbert space in which the
e-e interactions plays a decisive role. The e-e interaction is then treated explic-
itly within this limited subspace, while the influence of the rest of the Hilbert
space is treated via a mean-field approximation. This greatly reduces the inter-
action terms as we let the prominent interactions happen in small spaces.

This process of describing the e-e interactions as prominent in certain subspaces
(and the rest of the space via a mean-field) is what effective electron-electron
interactions are comprised off.

1.1.3 Infinitely Heavy Nucleus

When the nucleus is not infinitely massive any more, electron and nucleus will
move about their common centre of mass which lies close to the nucleus2. The
orbit of the electron (therefore also its energy)will slightly change. Energies cor-
rected for this effect are obtained by multiplying the results from the infinitely
massive proton by a factor 1

1+ me
M

(M is the mass of the nucleus) . This increases

the ground state energy of H by 0.008 eV. For Deuterium (‘heavy Hydrogen’,
with a nucleus of 1 proton and 1 neutron) this formula tells its ground state is
0.004 eV lower than the H ground state. For really heavy nuclei where M is
high, the effect of this approximation becomes progressively small.

In contrast to this classical mass effect, a second correction due to finite mass
is of a purely quantumphysical origin: the zero-point motion of light objects.
A quantummechanical object can never be at rest, even not at 0 K and in its
absolute ground state. Always there will be a random vibration about its rest
position, a phenomenon that is called zero-point motion and can be understood
as a consequence of the uncertainty principle. The lighter the object, the more
important the zero-point motion. Nuclei are usually sufficiently heavy to make
this zero-point motion negligibly small, but for the lightest nuclei it can become
significant.

2The proton-to-electron mass ratio is about 1836.
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1.1.4 Point Nucleus

The fourth approximation we will discuss is the assumption that the nucleus
has no structure. What do we mean by this? In the first place that all protons
and neutrons in the nucleus coincide with the same mathematical point. If this
is not the case - imagine a spherical, cigar-shaped or even more complex nucleus
- the Coulomb potential due to the nucleus will not be spherically symmetric
any more. This will result in other solutions and therefore energy levels of our
Hamiltonian.

The same happens if the nucleus has structure in a magnetic sense: it can
have a magnetic dipole moment (or even a higher order multipole moment).
Because of the dipole moment the nucleus will generate a magnetic field, and
this breaks the spherical symmetry and hence leads to preferred orientations of
the electrons.

And now we have finally arrived at the subject of this course: the role of the
structure of the nucleus, in its spatial and magnetic sense. As we will calculate
later, the new influence of the nucleus we take now into account will introduce
new shifts and splittings of the order of µeV. Because the energy scale which is
needed to describe these new splittings is orders of magnitude smaller than the
energy scale for the fine structure, the new details in the atomic spectrum are
called the hyperfine structure of the atom.

Figure 1: VIP number one. It shows the different energy levels and splittings
of an atom.
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1.2 The Energy Levels

While reading this section, keep an eye on Fig. 1 p.4. We will constantly be
referencing the energy levels on this picture while describing every part of said
image. The energy levels on the left are all possible energy levels of the ”nucleus
+ electrons” system. The sections below describe the different attributions to
said energy levels. Unfortunately it is not possible to ”see” all different energy
levels on said energy scale. That’s why we zoom in where needed in the centre
and on the right side of the image.

1.2.1 Nucleus Excitations

As described in the previous chapter, a nucleus can get excited when the internal
distribution of protons and neutrons change. This results in a configuration with
exactly the same particles, yet with a higher overall energy (i.e. a higher energy
level). These configurations are the most left energy levels I1, I2,... This can
be done via absorbing a photon in the keV/MeV energy range. Or when a
nucleus decays to another nucleus, which can be not yet in its ground state
after decaying. As seen via the energy of the photons, the difference in energies
are of order keV/MeV.

1.2.2 Electron Excitations

In the Rutherford-Bohr model, electrons orbit the nucleus in well defined orbits.
These well defined orbits have well defined energy levels, which are quantized,
as seen on the second energy splitting (counting from the left). The difference
in energy values are of order eV. It therefore also takes photons in the order of
eV to excite electrons to higher orbits.

1.2.3 Spin-Orbit Coupling (fine splitting)

This is where the energy splitting starts to get more complicated. The spin-
orbit coupling is a weak magnetic interaction (coupling) between the electron
spin and its orbital motion. The intrinsic spin of the electron creates a spin
magnetic dipole moment. While, from the restframe of the electron, the rotating
nucleus creates a magnetic field. This is why it is called a relativistic effect,
it arises from putting ourselves at the position of a stationary electron and
moving nucleus. For light atoms, the individual spins si will interact with
each other to form a total spin angular momentum S. Likewise, the individual
orbital angular momentum li form a total orbital angular momentum L. These
quantum numbers S and L interact with each other via what is called Russell-
Saunders coupling (or simply LS coupling). The S and L couple together and
form a total angular momentum J = L + S. This value depends on the relative
orientation between L and S. Just as how the energy of a system is different
between different orientations of a bar magnet in a magnetic field, the energy
correction is different for different values of J as illustrated in the figure on the
next page.
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Figure 2: Coupling of different L and S into different J, and its effect on the
energy splitting.

On the left, two different relative orientations are shown, each resulting in a
different J. These different values result in different energy splitting of order of
meV.

There is a way of characterizing different states, this is done via the term sym-
bols. A term symbol is defined via 2S+1LJ . For same values of S and L, different
orientations (and therefore different values of J) are possible. J ranges from L+S
to |L-S| in steps of -1. When filling in L, we use the symbols S, P, D, F, G, H,...
instead of 0, 1, 2,...

As stated before, different orientations will result in different energy levels.
To know the relative orientation of the energy levels, we can use Hund’s rules.
They say the following:

• The highest multiplicity (defined as 2S+1) has the lowest energy.

• For the same multiplicity, the largest L has the lowest energy.

• For the same L and half filled or less filled shells, the lowest J has the
lowest energy. For the same L and more than half filled shells, the highest
J as the lowest energy.

When talking about shells, we of course mean the outer most shell. As electrons
of filled shells balance each other in si and li, therefore creating S = L = 0 and
by extend J = 0.

Take, for example, Sodium. It has a filled s and p shell, and one electron
in the 2s shell. This gives us the term 2S1/2. When exciting this electron to the
2p shell, we have two possible terms. 2P1/2 and 2P3/2 (via S = 1/2, the same as
before, and L now = 1). Where Hund’s rules dictate that E(2P3/2) > E(2P1/2).
This fine splitting of energy levels is something one can see when looking at the
spectrum of a Sodium lamp. An orange doublet can be seen at wavelengths of
589.6 nm and 589.0 nm.
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1.2.4 Hyperfine Splitting

Two different hyperfine splittings can be identified. The electric hyperfine split-
ting and the magnetic hyperfine splitting. The following two sections will be
rather short, as they both get their own chapter where they will be broadly
discussed.

The electric hyperfine splitting has to do with the interaction of the nuclear
quadrupole moment and the electric-field gradient (of the electron cloud). The
electric-field gradient measures the change of the electric field at the nucleus
generated by the electronic charge distribution. We will see later that this can
be described as a coupling between the two parameters (here tensors of rank 2)
and this will give an energy splitting (in the order of µeV).

The magnetic hyperfine splitting has to do with the interaction of the nucleur
dipole moment and the magnetic hyperfine field. We have seen such a magnetic
field before, it is the magnetic field associated with the total angular momen-
tum J. The coupling betwheen these two parameters (both vectors) will give
our energy splitting (again in the order of µeV).

Figure 3: Illustration of the different terms in the electric hyperfine splitting.

Figure 4: Illustration of the different terms in the magnetic hyperfine splitting.
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2 Gravitational Analogue

This section extensively discusses a problem from classical mechanics. We will
highly benefit from this when discussing the quantum multipole expansion and
the quadrupole term where very similar reasonings appear. The full mathemat-
ics will be developed only once here, where we can profit from the absence of
quantum mechanics, which could possibly distract us. In the later parts about
the multipole expansion and the quadrupole term we will just have to copy the
results, and concentrate on the interpretation. Sometimes notation becomes
weird in this chapter. We prefer however to give the mathematical objects very
explicit names, to point out the often subtle differences between them and hence
avoid misconceptions.

2.1 Two Mass Distributions: Multipole Expansion

Take a look at the image bellow. How can we find the potential energy Epot of
said static system of two bodies M1 and M2 in situation 1? Where both masses
are in each others gravitational fields, with their center of mass separated by a
vector ~r0.

Figure 5: Three situations of two mass distributions interacting via gravitation.
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We use the following notation: Mi is the name of the body, mi its total mass,
and ρi(~ri) is its mass density distribution function. Our reference frame XYZ
will have its centre in the barycentre of M1

3. In general, both mass distribu-
tions are inhomogeneous and have an irregular shape. Because potential energy
is defined only apart from an additive constant, we make the usual convention
that Epot vanishes if the two masses are at an infinite distance from each other.

We can choose to calculate either the potential energy of M2 in the field of
M1, or vice-versa. Choosing the latter possibility, we can write:

Epot =

∫
1

ρ1(~r1)V2(~r1) d~r1 (1)

The integral is taken over the volume occupied by M1, or over all space. The
potential V2 of M2 at ~r1 can be written as:

V2(~r1) = −G
∫

2

ρ2(~r2)

|~r2 − ~r1|
d~r2 (2)

which leads to the following expression for the potential energy:

Epot = −G
∫

1

∫
2

ρ1(~r1)ρ2(~r2)

|~r2 − ~r1|
d~r1 d~r2 (3)

Due to the possibly irregular shapes (as will be in most general cases) of both
mass distributions, the integrals in equations 1 to 3 can be hard to calculate. In
order to be able to deal with simpler integrals and in order to gain simultaneously
physical insight, we will make a series expansion of equation 3 using the so-called
Laplace expansion or multipole expansion in spherical coordinates4

1

|~r2 − ~r1|
= 4π

∑
n,q

rn<
rn+1
>

1

2n+ 1
Y n∗q (θ1, φ1)Y nq (θ2, φ2) (4)

with r< = min (r1, r2) and r> = max (r1, r2). The potential energy of equa-
tion 3 then becomes:

Epot = −4πG

∫
1

∫
2

ρ1(~r1)ρ2(~r2)

(∑
n,q

rn<
rn+1
>

1

2n+ 1
Y n∗q (θ1, φ1)Y nq (θ2, φ2)

)
d~r1 d~r2

(5)

3Any other centre will yield the same mathematics, but using this condition makes further
calculations a lot easier.

4The Condon-Shortley phase convention for the spherical harmonics is used, see
http://mathworld.wolfram.com/Condon-ShortleyPhase.html
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In general, this is still a sum of very complicated integrals, as we cannot separate
the integration over ~r1 and ~r2. However, if the two bodies are such that any r1

is smaller then any r2
5, the separation can be made and we obtain:

Epot =
∑
n,q

Qn∗q V nq (6)

with

Qnq =

√
4π

2n+ 1

∫
1

ρ1(~r1) rn1 Y
n
q (θ1, φ1) d~r1 (7)

and

V nq = −G
√

4π

2n+ 1

∫
2

ρ2(~r2)

rn+1
2

Y nq (θ2, φ2) d~r2 (8)

The Q-tensors have units kg mn, the V-tensors N/(kg mn−1) and their products
Nm or J. It is important to realize that the summation is a dot product between
two spherical tensors (a different prefactor can occur if the dot product is taken
between cartesian tensors).

2.2 The monopole term (n=0)

The monopole term can be read as a dot product between two tensors of rank 0
(scalars): the monopole moment Q0

0 due to M1 (units: kg), and the monopole
field V 0

0 due to M2 (units: Nm/kg). Explicit expressions are:

Q0
0 = m1 (9)

V 0
0 = −G

∫
ρ2(~r2)

|~r2|
d~r2 (10)

E
(0)
pot = Q0∗

0 V
0
0 (11)

The monopole field is nothing else than the gravitational potential at the origin
(where the barycentre of M1 is) due to M2, while the monopole moment is the
total mass m1 of M1. The monopole contribution to the potential energy would
be the only and exact contribution to the potential energy in the case where M1

would be a point mass, situated at the origin.

5This excludes a) bodies that overlap (not possible for masses, but possible for charges:
e.g. s-electron penetration in the nucleus), and b) a body with a hole in which a bulge on the
other body enters.
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2.3 The dipole term (n=1)

The dipole term can be read as a dot product between two tensors of rank 1
(vectors): the dipole moment Q1

q due to M1 (units: kg m), and the dipole field
V 1
q due to M2 (units: N/kg). Explicit expressions are:

Q1
q =

√
4π

3

∫
1

ρ1(~r1) r1 Y
1
q (θ1, φ1) d~r1 (12)

V 1
q = −G

√
4π

3

∫
2

ρ2(~r2)

r2
2

Y 1
q (θ2, φ2) d~r2 (13)

E
(1)
pot =

∑
q=−1,0,1

Q1∗
q V

1
q (14)

We can transform the dipole moment into 3 components of a cartesian vector,
which will be more easily interpretable:

Qx =

√
2

2

(
Q1
−1 −Q1

+1

)
(15)

=

∫
1

ρ1(~r1) r1 sin θ cosφd~r1 (16)

=

∫
1

ρ1(~r1)x1 d~r1 (17)

Qy =

∫
1

ρ1(~r1) y1 d~r1 (18)

Qz =

∫
1

ρ1(~r1) z1 d~r1 (19)

One recognizes the definition of the position vector of the center of mass of M1,
multiplied by the total mass m1. As we have chosen the origin of the axis system
in the center of mass, we can conclude that the three components of the dipole
moment are zero, both in the cartesian and in the spherical form.

In a similar way, the following cartesian components are found for the dipole
field:

Vx = −G
∫

2

ρ2(~r2)

|r2|3
x2 d~r2 (20)

Vy = −G
∫

2

ρ2(~r2)

|r2|3
y2 d~r2 (21)

Vz = −G
∫

2

ρ2(~r2)

|r2|3
z2 d~r2 (22)
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One recognizes now that the dipole field vector is the opposite of the gravita-
tional field due to M2 at the origin6.

2.4 The quadrupole term (n=2)

The quadrupole term can be read as a dot product between two tensors of rank
2: the quadrupole moment Q2

q due to M1 (units: kg m2), and the quadrupole
field V 2

q due to M2 (units: N/(kg m)). Explicit expressions are:

Q2
q =

√
4π

5

∫
1

ρ1(~r1) r2
1 Y

2
q (θ1, φ1) d~r1 (24)

V 2
q = −G

√
4π

5

∫
2

ρ2(~r2)

r3
2

Y 2
q (θ2, φ2) d~r2 (25)

E
(2)
pot =

∑
q=−2,...,2

Q2∗
q V

2
q (26)

Being given a spherical tensor field of rank 2, the corresponding 6 components
of its cartesian form (only 5 of them are independent) are found by:

a11 =

√
6

2

(
a2

2 + a2
−2

)
− a2

0

a22 = −
√

6

2

(
a2

2 + a2
−2

)
− a2

0

a33 = 2a2
0 (27)

a12 = −
√

6

2
i
(
a2

2 − a2
−2

)
a13 = −

√
6

2

(
a2

1 − a2
−1

)
a23 =

√
6

2
i
(
a2

1 + a2
−1

)
(28)

The quadrupole moment tensor can be transformed in its cartesian form: a
traceless, symmetric matrix:

cQ
(2)
sh =

∫
1

ρ1(~r1)

 3x2
1 − r2

1 3x1y1 3x1z1

3x1y1 3y2
1 − r2

1 3y1z1

3x1z1 3y1z1 3z2
1 − r2

1

 d~r1 (29)

6 ~E2(~0) = −~∇V2(~0), with V2 given by equation 2. This results in:

~E2(~0) = G

∫
2

ρ2(~r2)

|r2|3
~r2 d~r2 (23)
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It is understood that the integration over ~r1 is performed for all of the 9 elements.
The physical interpretation of the quadrupole moment tensor is as follows: its
ith diagonal element will be positive if along the ith axis of the reference frame
the actual radius of M1 is larger than the radius of the best-approximating
sphere. In this situation M1 is said to be prolate along this axis. In the inverse
case, M1 is oblate along this axis (see example in Fig. 6). For a perfect sphere,
this tensor is zero.

Figure 6: A spherical, prolate and oblate mass distribution (with
respect to the z-axis).

The same transformation (using equation 27) can be done for the quadrupole
field:

cV
(2)
sh = −G

∫
2

ρ2(~r2)

|~r2|5

 3x2
2 − r2

2 3x2y2 3x2z2

3x2y2 3y2
2 − r2

2 3y2z2

3x2z2 3y2z2 3z2
2 − r2

2

 d~r2 (30)

Note that the structure of this quadrupole field tensor is definitely different from
the quadrupole moment tensor, due to the factor 1/ |~r2|5.

How to interpret the meaning of this tensor? Let us take the negative gra-
dient of the x-component of the gravitational field:

−∇E2x(~0) =

(
−∂E2x(~0)

∂x1
, −∂E2x(~0)

∂y1
, −∂E2x(~0)

∂z1

)
(31)

=

(
∂2V2(~0)

∂x2
1

,
∂2V2(~0)

∂y1∂x1
,
∂2V2(~0)

∂z1∂x1

)
(32)
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Repeating this for the y- and z-components of the gravitational field leads to 9
quantities which can be arranged in a symmetric matrix:

∂2V2(~0)
∂x2

1

∂2V2(~0)
∂y1∂x1

∂2V2(~0)
∂z1∂x1

∂2V2(~0)
∂x1∂y1

∂2V2(~0)
∂y21

∂2V2(~0)
∂z1∂y1

∂2V2(~0)
∂x1∂z1

∂2f(~0)
∂y1∂z1

∂2V2(~0)
∂z21

 (33)

This matrix is also trace-less. Indeed, its trace is the Laplacian of the potential
due to M2, evaluated at the origin:

∆V2(~0) =
∂2V2(~0)

∂x2
+
∂2V2(~0)

∂y2
+
∂2V2(~0)

∂z2
= 4πGρ2(~0) (34)

By the Poisson equation, this Laplacian can be related to ρ2(~0), the mass density
of M2 at the origin. By our restriction that ~r1 < ~r2, ρ2(~0) must necessarily be
zero, and the above matrix is trace-less. You can verify now that:

Vij =
∂2V2(~0)

∂x1i∂x1j
(35)

= −G
∫

2

ρ2(~r2)

|~r2|5
(3x2ix2j − r2

2δij) d~r2 (36)

which are exactly the 9 components of the cartesian form of the quadrupole field
given in equation 30. Looking at equations 31 and 33, we can therefore interpret
the quadrupole field tensor as the negative gradient of the gravitational field at
the origin due to M2. Therefore the quadrupole field tensor is often called the
(gravitational-) field gradient tensor. Its ijth element expresses how strongly
the i-component of the gravitational field at the origin varies if one goes along
the j-direction.

2.5 Correction to Multipole Expansion.

By assuming r1 < r2 in the Laplace expansion, we made an error for those
mass distributions where this condition is not fulfilled. Often this error will
be small, but in the case of overlapping charge distributions as we will meet
them in the following chapters, it will produce nevertheless measurable effects.
The necessary corrections can be expressed as corrections to each of the mul-
tipole terms separately, but the correction to the monopole term is the most
important one. In order to find this correction, we will take the opportunity
to use the multipole expansion in cartesian coordinates rather than the Laplace
expansion, which sheds a different light on the problem we have just solved
in spherical coordinates. The full solution using spherical coordinates involves
Tesseral harmonics, and can be found at many places.
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We start again from equation 3. In order to avoid the complicated integral in
this expression, we make a Taylor expansion of V2 around the origin of the axis
system. Such a Taylor expansion converges rapidly if the points ~r1 at which we
need the value of V2 are much closer to the origin than the major part of the
mass of M2 is. We assume that this is the case7, and will truncate the series
after the second order term. On how to expand a potential, consider a function

f(~r) =

∫
g(~rv)

|~rv − ~r|
d~rv (37)

The integral runs over that part of space where g(~rv) is not zero, which might
be a finite or infinite region. If g is a charge or mass distribution, f gives the
electric or gravitational potential in a point ~r (apart from an appropriate factor).
That point can be either inside or outside the non-zero region of g. If it lies
inside, the denominator in the integral becomes zero and we have to care about
the convergence of the integral. The latter is determined by the properties of g.
We assume that we know the value of f and of all its derivatives at the origin
~0. What we want to know is the value of f at points ~r = (x, y, z) that are
not far away from ~0. This means we need a Taylor expansion of f(~r) around ~0.
The general form of a Taylor expansion around ~0 for a function with vectors as
argument, is:

f(~0 + ~r) =

∞∑
j=0

[
1

j!

(
~r · ~∇~r ′

)j
f(~r ′)

]
~r ′=~0

(38)

Explicitly for our case, this gives for the zeroth order term:

E
(0)
pot =

(∫
ρ1(~r1) d~r1

)
V2(~0) (39)

= m1 V2(~0) (40)

= m1

(
−G

∫
ρ2(~r2)

|~r2|
d~r2

)
(41)

= Q0
0V

0
0 (42)

= sQ
(0)
sh · sV

(0)
sh = cQ

(0)
sh · cV

(0)
sh (43)

In equation 41, we recognize the monopole moment and monopole field derived
in equations 9 and 10.

7We will use this later for atoms, where ~r1 is of the order of the nuclear radius (10−15 m)
and ~r2 of the order of the radius of an electron orbit (10−10 m).
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The first order term in the expansion of Epot can be written as:

E
(1)
pot =

[ ∫
ρ1(~r1)x1 d~r1

∫
ρ1(~r1)y1 d~r1

∫
ρ1(~r1)z1 d~r1

]


∂V2(~0)
∂x1

∂V2(~0)
∂y1

∂V2(~0)
∂z1

 (44)

=
[ ∫

ρ1(~r1)x1 d~r1

∫
ρ1(~r1)y1 d~r1

∫
ρ1(~r1)z1 d~r1

]

−G

∫ ρ2(~r2)

|~r2|3
x2 d~r2

−G
∫ ρ2(~r2)

|~r2|3
y2 d~r2

−G
∫ ρ2(~r2)

|~r2|3
z2 d~r2


(45)

= cQ
(1)
sh · cV

(1)
sh = sQ

(1)
sh · sV

(1)
sh (46)

We recognize the cartesian forms of the dipole moment and the dipole field, as
derived before.
The second order term in the expansion of Epot is:

E
(2)
pot =

1

2

 ∫
ρ1(~r1)x2

1 d~r1

∫
ρ1(~r1)x1y1 d~r1

∫
ρ1(~r1)x1z1 d~r1∫

ρ1(~r1)y1x1 d~r1

∫
ρ1(~r1)y2

1 d~r1

∫
ρ1(~r1)y1z1 d~r1∫

ρ1(~r1)z1x1 d~r1

∫
ρ1(~r1)z1y1 d~r1

∫
ρ1(~r1)z2

1 d~r1

 ·


∂2V2(~0)
∂x2

1

∂2V2(~0)
∂y1∂x1

∂2V2(~0)
∂z1∂x1

∂2V2(~0)
∂x1∂y1

∂2V2(~0)
∂y21

∂2V2(~0)
∂z1∂y1

∂2V2(~0)
∂x1∂z1

∂2f(~0)
∂y1∂z1

∂2V2(~0)
∂z21


(47)

=
1

2
cK

(2) · cW (2) (48)

This is a dot product between two (Cartesian) tensors of rank 2 (mind the fact
that this is no matrix multiplication, but short-hand notation for a dot prod-
uct)8. In contrast to the zeroth and first order terms, we cannot immediately
identify the two cartesian tensors in this dot product with multipole moments
and multipole fields. The left tensor seems to be related to the quadrupole mo-
ment (equation 29), but is not identical to it. The right tensor seems at first

8We are all accustomed to the dot product for 2 vectors of dimension n. Where we multiply
the first element of the first vector with the first element of the second vector and sum it with
the product between the second element of the first vector and the second element of the
second vector and so on to the n’th pair of elements. It is clear that both vectors need to be of
the same dimention. The same holds for the dot product between two matrices (dimensions n
x m). Here we will multiply element (0,0) of the first matrix with element (0,0) of the second
matrix and sum it with the product between (0,1) of the first matrix and element (0,1) of the
second matrix, all the way to (0,m). Then we continue summing for (1,0) to (1,m). Up to
(n,0) to (n,m). Summing each product until we get our final result (a scalar).

16



sight identical to the cartesian form of the quadrupole field (equation 30), but it
is not: its trace – the Laplacian of the potential – is not necessarily zero, because
we did not need to require r1 < r2 for the Taylor expansion. By equation 34,
this trace can be different from zero. But we can write in the same way both
tensors as a sum of the quadrupole moment/field and a multiple of the unit 3×3
matrix (the integrations are noted in short-hand by curled {brackets}):

cK
(2) =

1

3

 {3x2
1

}
−
{
r2
1

}
{3x1y1} {3x1z1}

{3y1x1}
{

3y2
1

}
−
{
r2
1

}
{3y1z1}

{3z1x1} {3z1y1}
{

3z2
1

}
−
{
r2
1

}
 +

1

3

 {r2
1

}
0 0

0
{
r2
1

}
0

0 0
{
r2
1

}


(49)

cW
(2) =



∂2V2(~0)
∂x2

1
− ∆V2(~0)

3
∂2V2(~0)
∂y1∂x1

∂2V2(~0)
∂z1∂x1

∂2V2(~0)
∂x1∂y1

∂2V2(~0)
∂y21

− ∆V2(~0)
3

∂2V2(~0)
∂z1∂y1

∂2V2(~0)
∂x1∂z1

∂2f(~0)
∂y1∂z1

∂2V2(~0)
∂z21

− ∆V2(~0)
3

 +


∆V2(~0)

3 0 0

0 ∆V2(~0)
3 0

0 0 ∆V2(~0)
3


(50)

Now make the dot product between these two sums. You end up with 4 terms,
of which two will be zero: the dot product between a trace-less tensor and a
multiple of a unit matrix is zero. With the two nonzero terms we can write the
second order term of the Taylor expansion of Epot as:

E
(2)
pot =

1

6

 {3x2
1

}
−
{
r2
1

}
{3x1y1} {3x1z1}

{3y1x1}
{

3y2
1

}
−
{
r2
1

}
{3y1z1}

{3z1x1} {3z1y1}
{

3z2
1

}
−
{
r2
1

}
 ·



∂2V2(~0)
∂x2

1
− ∆V2(~0)

3
∂2V2(~0)
∂y1∂x1

∂2V2(~0)
∂z1∂x1

∂2V2(~0)
∂x1∂y1

∂2V2(~0)
∂y21

− ∆V2(~0)
3

∂2V2(~0)
∂z1∂y1

∂2V2(~0)
∂x1∂z1

∂2f(~0)
∂y1∂z1

∂2V2(~0)
∂z21

− ∆V2(~0)
3

 +

1

6

 {r2
1

}
0 0

0
{
r2
1

}
0

0 0
{
r2
1

}
 ·


∆V2(~0)
3 0 0

0 ∆V2(~0)
3 0

0 0 ∆V2(~0)
3

 (51)

Working it out shows that this is just a scalar product between two numbers,
which we can interpret as a dot product:

1

6
cQ

(0)
sz · cV (0)

sz =
1

6
∆V2(~0)

〈
r2
1

〉
(52)

=
4πG

6
ρ2(~0)

∫
ρ1(~r1) r2

1 d~r1 (53)
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This energy term is the leading correction to the multipole expansion of equa-
tion 6 for situations where r1 can be larger than r2. It is a dot product between
two tensors of rank 0, hence this is a correction to the monopole term of the
multipole expansion. The reason why we find this contribution in the Taylor ex-
pansion and not in the (approximated) Laplace expansion is that in the former
we did not require r1 < r2.

3 The Double Ring

Consider a dumb-bell consisting out of two equal point masses connected by a
rigid massless rod. The total mass of the dumb-bell is m1, the length of the rod
is l1. As the dumb-bell will play the role of M1, we fix it with its centre of mass
(the middle of the rod) to the origin of an axis system XYZ, in such a way that
the dumb-bell can rotate freely about this origin. As second mass distribution
take 2 rings with radius R in planes parallel to XY, separated by a distance h,
one h

2 above the XY-plane and one h
2 below it. The total mass of the 2 rings is

m2, and its (constant) linear mass density is ρ2 (fig. reffig-2-3). The question
we want to solve is: if also the rings are kept fixed in XYZ, what will be the
preferred (= lowest-energy) orientation of the dumb-bell?

Figure 7: A double ring system. The rings are shaded gray for
clarity, but actually they are hollow and all mass is concentrated
at their circumference.

The condition r1
r2
� 1 becomes here l1

2 �
√

h2

4 +R2, which is fulfilled if the

length of the dumb-bell is small enough compared to the geometry of the double
ring. The problem has some circular symmetry, and it will be useful to use
spherical coordinates in the cartesian tensors9. There is no overlap and hence

9An alternative is to use equation 5 up to the quadrupole term. Try this solution yourself.

18



no size-dependent monopole term. The shape-dependent monopole term can
easily be calculated to be10:

E
(0)
pot = V

(0)
sh ·Q

(0)
sh

= − Gm1m2√
h2

4 +R2
(54)

For an arbitrary orientation (θ, φ) of the dumb-bell, its quadrupole moment is:

cQ
(2)
sh =

3m1l
2
1

4

 sin2θ cos2φ− 1
3 sin2θ sinφ cosφ sinθ cosθ cosφ

sin2θ sinφ cosφ sin2θ sin2φ− 1
3 sinθ cosθ sinφ

sinθ cosθ cosφ sinθ cosθ sinφ cos2θ − 1
3

 (55)

Note that this quadrupole moment does not change upon inversion of the axis
system (θ → π − θ, φ → φ + π), which we expect as also the dumb-bell has
inversion symmetry.

In order to calculate the tensor of the gradient of the gravitational field gener-
ated by the rings at the origin of XYZ, we use the following equalities:

R = r2 sinθ0

h = 2r2 cosθ0

ρ2 = m2

4π r2 sinθ0

R2 + h2

4 = r2
2

(56)

and find that11 (there is no overlap, such that ρ2(~0) = 0):

cV
(2)
sh = − Gm2 (h2 − 2R2)

8R(R2 + h2

4 )
5
2

 −1 0 0
0 −1 0
0 0 2

 (57)

The diagonal form of this equation shows that XYZ by chance (?) is a prin-

cipal axis system for the tensor V
(2)
sh . After some straightforward goniometric

manipulation, the quadrupole energy becomes:

1

6
Q

(2)
sh · V

(2)
sh = − 3Gm1m2 l

2
1 (h2 − 2R2)

32R(R2 + h2

4 )
5
2

(2 cos2θ − sin2θ) (58)

This energy does not depend on the azimuthal orientation φ of the dumb-bell.
The value of θlow where the quadrupole energy is minimal will depend on the
sign of h2 − 2R2: 

√
2R < h =⇒ θlow = 0◦√
2R = h =⇒ θlow = any angle√
2R > h =⇒ θlow = 90◦

(59)

10Both centers of mass coincide at ~0, hence ~r0 = ~0 and one could write everything explicitly

in terms of fields as E
(0)
pot (

~0) etc.
11take d~r2 = 2 r2 sin θ0 dφ (the factor 2 is due to the double ring)
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If the radius is small enough compared to the distance between the rings, the
dumb-bell has it lowest energy when it lies parallel to the Z-axis. Not unex-
pected: the limiting case are two rings which are so small that they are almost
point masses on the z-axis, and obviously the dumb-bell would like to lie along
the z-axis in such case, as this minimizes the distance between the dumb-bell
and the masses, and hence maximizes the gravitational attraction. When the
radius is large, the dumb-bell prefers an orientation in the XY-plane. Also not
unexpected: the limiting case is two coinciding rings, and now distances are
minimized if the dumb-bell is in the plane of the rings. One special R/h-ratio
exists for which the orientation of the dumb-bell does not matter.

It is instructive to have a closer look at this. In section 2.4, we defined the
main component of a rank 2 tensor, and mass distributions are divided into
three distinct classes based on the sign of their main component (see Figure 6).
With this terminology, we see that θlow for the dumb-bell being 0◦, anything or
90◦ corresponds to the main component of the double ring’s field gradient be-
ing negative, zero or positive (equation 57). Three typical double ring systems
belonging to each of the 3 classes are drawn below.

Figure 8: The three distinct classes of double-ring systems.

For some orientations the quadrupole correction is negative and for others posi-
tive. If the total energy is approximated by the sum of monopole and quadrupole
contributions, some orientations will reduce the total energy and others will in-
crease it. This is shown schematically in Fig. 9, a kind of picture we will meet
again later in a quantummechanical situation. Note that all quadrupole energies
between the two outer values are possible (i.e. all angles θ are possible).
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Figure 9: Quadrupole corrections to the monopole energy for
a dumb-bell in a double ring, for the case where h >

√
2R.

For any orientation of the dumb-bell, a total energy between
the shown outer values is found. The quantity α has the form

α =
Gm1m2`

2
1(h2−2R2)

32(R2+ h2

4 )5/2
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