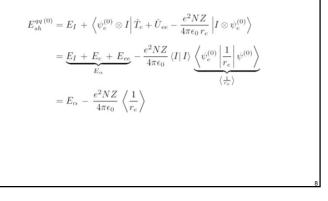

order	multipole moment / field	first order quasi moment / quasi field	second order quasi momer / quasi field	it	
O(0)	$\begin{pmatrix} M \propto r^0 Y_{00} \\ V \propto v(0) \end{pmatrix}$ MI [a]	$\tilde{M}^{(1)} \propto \{r^2 Y_{00}\}$ $\tilde{V}^{(1)} \propto \Delta v(0)$ MS ⁽¹⁾ [d]	$\tilde{M}^{(2)} \propto \{r^4 Y_{00}\}$ $\tilde{V}^{(2)} \propto \Delta^2 v(0)$	MS ⁽²⁾	
O(2)	$\left. \begin{array}{c} Q \propto r^2 Y_{20} \\ V_{ij} \propto \partial_{ij} v(0) \end{array} \right\} \mathrm{QI} [\mathrm{b}] \end{array}$	$\hat{Q}^{(1)} \propto \{r^4 Y_{20}\}$ $\hat{V}^{(1)}_{ij} \propto \partial_{ij} \Delta v(0)$ $QS^{(1)}[e]$	$\tilde{Q}^{(2)} \propto \{r^6 Y_{20}\}$ $\tilde{V}^{(2)}_{ij} \propto \partial_{ij} \Delta^2 v(0)$	$\left. \right\} QS^{(2)}$	
O(4)	$\left. \begin{array}{c} H \propto r^4 Y_{40} \\ V_{ijkl} \propto \partial_{ijkl} v(0) \end{array} \right\} {\rm HDI} [{\rm c}] \end{array}$	$\frac{\hat{H}^{(1)} \propto \{r^{6}Y_{40}\}}{\tilde{V}^{(1)}_{ijkl} \propto \partial_{ijkl}\Delta v(0)}$ HDS ⁽¹⁾	$\hat{H}^{(2)} \propto \{r^8 Y_{40}\}$ $\tilde{V}^{(2)}_{ijkl} \propto \partial_{ijkl} \Delta^2 v(0)$	HDS ⁽²⁾	
d electro pansion he first onopole a quan e hexad oments/ st order	Systematic overview of nuclear multip onic multipole and quasi multipole fi of for two interacting (and overlappi) olumn gives the regular multipole interaction (labeled by [a]) which pro- tum frame-overk. This is perturbs ecapole interaction. The next co- fields for every multipole interaction, corrections (shifts) to the multipole extendedness of the nucleus. The	elds that appear in the multipole agy classical charge distributions. expansion for point nuclei: the ides the unperturbed hamiltonian 1 by $[b]$ the quadrupole and $[c]$ lumms give the quasi multipole denoted by a tilde. They provide interactions of the first column,	 • multipole inte • first order mu • second order • 	ltipole sh	

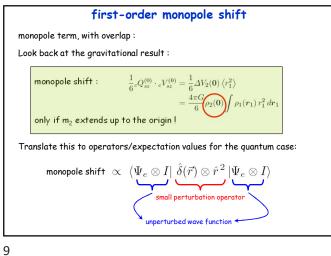

2

6

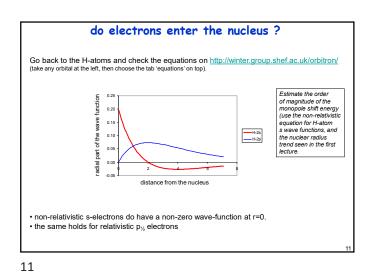
overview for the charge-charge case first order multipole second order order $\begin{array}{c} \text{quasi moment} \\ \text{/ quasi field} \\ \hline \tilde{M}^{(2)} \propto \{r^4 Y_{00}\} \\ \tilde{V}^{(2)} \propto \Delta^2 v(0) \end{array} \right\} \text{MS}^{(2)}$ moment quasi moment $\langle quasi \text{ field} \\ \tilde{M}^{(1)} \propto \{r^2 Y_{00}\} \\ \tilde{V}^{(1)} \propto \Delta v(0) \end{pmatrix} MS^{(1)} [d]$ $\frac{M \propto r^0 Y_{00}}{V \propto v(0)}$ MI [a] 0(0 $\begin{array}{l} \hat{Q}^{(1)} \propto \{r^4 Y_{20}\} \\ \hat{V}^{(1)}_{ij} \propto \partial_{ij} \Delta v(0) \end{array}$ $\hat{Q}^{(2)} \propto \{r^6 Y_{20}\}$ $\hat{V}^{(2)}_{ii} \propto \partial_{ii} \Delta^2 v(0)$ $\left. \begin{array}{c} Q \propto r^2 Y_{20} \\ V_{ij} \propto \partial_{ij} v(0) \end{array} \right\} \, \mathrm{QI} \, [\mathrm{b}]$ $QS^{(1)}$ [e] $QS^{(2)}$ $\mathcal{O}(2$ $\left. \begin{array}{c} H \propto r^4 Y_{40} \\ V_{ijkl} \propto \partial_{ijkl} v(0) \end{array} \right\} \, \mathrm{HDI} \, \, [\mathrm{c}] \end{array}$ $\hat{H}^{(2)} \propto \{r^8 Y_{40}\}$ $\propto \{r^6 Y_{40}\}$ Ĥ HDS(1) HDS⁽²⁾ $\tilde{V}^{(1)}_{ijkl} \propto \partial_{ijkl} \Delta v(0)$ $\tilde{V}_{ijkl}^{(2)} \propto \partial_{ijkl} \Delta^2 v(0)$ This is what one usually does. Example for a single atom (if Z=1: hydrogen): $E_0^{(0)} = Q_{00}V_{00}$ = $\frac{-e^2Z}{4\pi\epsilon_0} \langle \Psi_e | \frac{1}{r} | \Psi_e \rangle$ $Q_{00} \ = \ \frac{\sqrt{4\pi}}{\sqrt{4\pi}} \ \int \rho_n(\vec{r}) \, d\vec{r}$ = eZ $V_{00} = \frac{1}{4\pi\epsilon_0} \frac{\sqrt{4\pi}}{\sqrt{4\pi}} \int \frac{\rho_e(\vec{r})}{r} \, d\vec{r}$ $= \frac{-e}{4\pi\epsilon_0} \left< \Psi_e \right| \frac{1}{r} \left| \Psi_e \right>$ 3

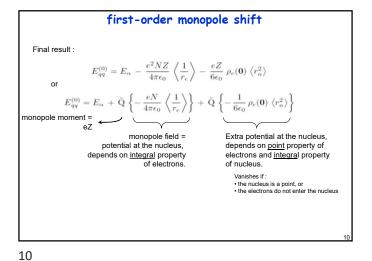

The influence of overlap: • first order monopole shift (well-known) • first order quadrupole shift (recent advancement) • first order hexadecapole shift (extremely small)

5

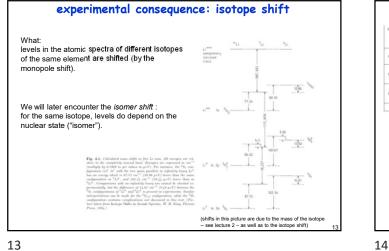

order	multipole	first order	second order		
	moment / field	quasi moment / quasi field	quasi moment / quasi field		
O(0)	$\begin{pmatrix} M \propto r^0 Y_{00} \\ V \propto v(0) \end{pmatrix}$ MI [a]	$\frac{\tilde{M}^{(1)} \propto \{r^2 Y_{00}\}}{\tilde{V}^{(1)} \propto \Delta v(0)}$ MS ⁽¹⁾ [d]	$\tilde{M}^{(2)} \propto \{r^4 Y_{00}\}\$ $\tilde{V}^{(2)} \propto \Delta^2 v(0)$	$MS^{(2)}$	
O(2)	$\left. \begin{array}{c} Q \propto r^2 Y_{20} \\ V_{ij} \propto \partial_{ij} v(0) \end{array} \right\} \mathrm{QI} [\mathrm{b}] \end{array}$	$\left. \begin{array}{c} \hat{Q}^{(1)} \propto \{r^4 Y_{20}\} \\ \tilde{V}^{(1)}_{ij} \propto \partial_{ij} \Delta v(0) \end{array} \right\} QS^{(1)} [e]$	$Q^{(2)} \propto \{r^{\mu}Y_{20}\}$ $\tilde{V}^{(2)}_{ij} \propto \partial_{ij}\Delta^2 v(0)$	QS ⁽²⁾	
O(4)	$\left. \begin{array}{c} H \propto r^4 Y_{40} \\ V_{ijkl} \propto \partial_{ijkl} v(0) \end{array} \right\} \mathrm{HDI} [\mathrm{c}] \end{array}$	$\frac{\hat{H}^{(1)} \propto \{r^{6}Y_{40}\}}{\tilde{V}^{(1)}_{ijkl} \propto \partial_{ijkl}\Delta v(0)}$ HDS ⁽¹⁾	$\hat{H}^{(2)} \propto \{r^8 Y_{40}\}$ $\tilde{V}^{(2)}_{ijkl} \propto \partial_{ijkl} \Delta^2 v(0)$	HDS ⁽²⁾	
	(444)				
		The influence of overlap):		
			onopole shift (knowr	n but exc	tic)
		• second order mo	onopole shift (knowr	n but exc	tic)
		• second order mo	onopole shift (knowr	n but exc	tic)

first-order monopole shift


monopole term, no overlap :



8



the electric monopole shift I₃ I₂ KeV/MeV I₁ L₂ L₂ L₁ L₂ L₁ L₂ L₁ L₂ L₁ L₂ L₁ L₂ L₂ L₁ L₂ L₂ L₂ L₂ L₁ L₂ L₁ L₂ L₃ L₂ L₃ L₃

12

order	multipole moment / field	first order quasi moment / quasi field	second order quasi moment / quasi field	
O(0)	$\begin{pmatrix} M \propto r^0 Y_{00} \\ V \propto v(0) \end{pmatrix}$ MI [a]	$\frac{\tilde{M}^{(1)} \propto \{r^2 Y_{00}\}}{\tilde{V}^{(1)} \propto \Delta v(0)}$ MS ⁽¹⁾ [d]	$\frac{\hat{M}^{(2)} \propto \{r^4 Y_{00}\}}{\hat{V}^{(2)} \propto \Delta^2 v(0)}$ }	IS ⁽²⁾
O(2)	$\left. \begin{array}{c} Q \propto r^2 Y_{20} \\ V_{ij} \propto \partial_{ij} v(0) \end{array} \right\} \mathrm{QI} [\mathrm{b}] \end{array}$	$\hat{Q}^{(1)} \propto \{r^4 Y_{20}\}$ $\hat{V}^{(1)}_{i1} \propto \partial_{ij} \Delta v(0)$ $QS^{(1)}[e]$	$\left. \begin{array}{c} Q^{(2)} \propto \{r^{b}Y_{20}\} \\ \tilde{V}^{(2)}_{ij} \propto \partial_{ij}\Delta^{2}v(0) \end{array} \right\}$	QS ⁽²⁾
O(4)	$\left. \begin{array}{c} H \propto r^4 Y_{40} \\ V_{ijkl} \propto \partial_{ijkl} v(0) \end{array} \right\} \mathrm{HDI} [\mathrm{c}] \end{array}$	$\frac{\hat{H}^{(1)} \propto \{r^{6}Y_{40}\}}{\tilde{V}^{(1)}_{itkl} \propto \partial_{ijkl}\Delta v(0)}$ HDS ⁽¹⁾	$\hat{H}^{(2)} \propto \{r^8 Y_{40}\}$ $\tilde{V}^{(2)}_{iikl} \propto \partial_{ijkl} \Delta^2 v(0)$	HDS ⁽²⁾
			nonala ahift (known l	
		 second order mo 	nopole shint (known i	out exotic)

13