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In some of the previous sessions we have studied the monopole contribution in the charge-
charge interaction, and we have noticed that if there is overlap, if the condition R1 smaller 
than R2 is not fulfilled, that in these situations extra effects can appear. In the present session 
we will examine exactly the same phenomenon, but now for the dipole term in the current-
current interaction. Let us quickly remember what exactly we did for the monopole term in the 
charge-charge interaction. So we had the regular monopole contribution in the charge-charge 
interaction, and if there is overlap, if R1 is not always smaller than R2, then we could have first 
order corrections due to this overlap. And here we see the equation of this first order overlap 
correction to the energy. It depends on the mean square radius of the nucleus, so this extra 
contribution vanishes if the nucleus becomes a point where the radius is zero, and it depends 
on the charge density at the center of the nucleus, the electron charge density at the center of 
the nucleus, so this contribution vanishes as well if there are no electrons inside the nucleus. 
This is a correction term, so it is small compared to the regular monopole interaction. Keep 
these points in mind and we will compare this now to the situation of the magnetic dipole 
term. What was our perturbing Hamiltonian for the dipole term in the current-current 
interaction? That was minus mu dot B, mu being the nuclear magnetic moment, B the 
hyperfine field, the magnetic field created by the electrons at the position of the nucleus. And 
the regular dipole terms, the ones that appear if you do the multipole expansion with the 
condition R1 always smaller than R2, these are the ones where the hyperfine field corresponds 
to the orbital hyperfine field and the spin-dipolar hyperfine field. We didn't mention that 
explicitly when we discussed these two hyperfine fields, but this is effectively the case. The 
overlap correction, corrections to this regular dipole contribution when electrons enter the 
nucleus, these are twofold and one of them we have seen before, that was this Fermi contact 
contribution. There is an extra hyperfine field when electrons enter the nucleus with the 
additional condition that the hyperfine field is only there if there is a spin imbalance inside the 
nucleus, if there are more electrons from one spin type inside the nucleus than electrons from 
another spin type. In this Fermi contact contribution we immediately see a difference with the 
overlap contribution to the charge-charge monopole term. This Fermi contact contribution 
does not vanish if the nucleus becomes a mathematical point. There is no size information of 
the nucleus in this term, so that's one difference. Another difference is that, as we have seen 
in the case of BCC iron, this Fermi contact hyperfine field is often the dominant hyperfine field, 
larger than the orbital and spin-dipolar contributions. So although it is an overlap correction, in 
magnitude it is more important than the regular dipole contribution. There is another 
contribution due to overlap that does depend on the size of the nucleus, and that is what is 
called the Bohr-Weisskopf effect. So let's have a look on what the Bohr-Weisskopf effect really 
is, and that will be a small contribution. Let's imagine a real nucleus, so a collection of protons 
and neutrons, and let's try to imagine where does the magnetic moment of this nucleus comes 
from. The nucleus as a whole has a magnetic moment, but the nucleus is now not a point, it's a 
distribution of protons and neutrons, protons that have their own intrinsic magnetic moment, 
neutrons have also their intrinsic magnetic moment, so the sum of these intrinsic magnetic 
moments will certainly contribute to the magnetic moment of the nucleus, but these charged 
protons and neutrons, they are also orbiting inside the nucleus that generates currents, and 
currents generate magnetic moments, so part of the nuclear magnetic moment will also be 



due to this orbital motions of the neutrons and the protons. That indicates that this magnetic 
moment of the nucleus is a property that originates from different regions in space. Some 
volume regions of the nucleus will contribute more to the nuclear magnetic moment than 
others. That means if we try to express exactly the energy due to the interaction of some 
magnetic field with the nuclear magnetic moment, if we try to express that exactly, we have to 
write an integral expression. We have to consider an infinitesimal part of the nucleus, look 
what is the contribution of that point in space to the nuclear magnetic moment, that will be an 
infinitesimal part of the nuclear magnetic moment, that will interact with the local value of the 
magnetic field, and then we have to integrate this expression over the entire nuclear volume 
to find the total interaction energy. If we now take two isotopes of the same element, these 
will, in general, have two different magnetic moments, two different nuclear magnetic 
moments, and these two different magnetic moments will be distributed in, in principle, very 
different ways over space. Well, let's do an experiment with two such isotopes, we will bring 
these two nuclei inside an external magnetic field, and only the nuclei, so these are not nuclei 
part of atoms, these are naked nuclei, stripped of all their electrons. We bring them into an 
external magnetic field, and that external magnetic field, if it is a homogeneous magnetic field, 
its value will be the same everywhere inside a nuclear volume. So if we express the magnetic 
interaction energy between these two nuclear moments and that external field, we can bring 
the external field outside of the integral, and we have only the integral over d mu, so we find 
the total magnetic moment. If we now could measure this interaction energy, and we see in 
the second half of this course methods, experimental methods to do so, so we can measure 
that energy, so if we measure that energy for the first isotope, and we measure that energy for 
the second isotope, and we make the ratio of these two energies, then this ratio will be exactly 
identical to the ratio of the two nuclear magnetic moments, because the external magnetic 
field that is present in both cases will cancel if we make that ratio. Now we repeat that 
experiment, but instead of bringing these two isotopes in an external magnetic field, we bring 
them in the same atom, so we give the same number of electrons to both of these nuclei, 
these electrons will generate a magnetic hyperfine field, and we measure the interaction 
energy between these nuclear magnetic moments and the hyperfine field. If we do that, then 
we cannot guarantee at all that these hyperfine fields will have exactly the same values at 
every point in the two nuclei. So we cannot take the hyperfine fields out of the integration. If 
we would know how the hyperfine field depends on space, we can work out the first integral, 
we can work out the second integral, and make the ratio, and this ratio will be very close to the 
ratio of the nuclear magnetic moments, but will not be exactly identical to that ratio. The 
difference between both can be expressed as some multiplication factor 1 plus a small 
number, and that is what we call the Bohr-Weisskopf effect. The Bohr-Weisskopf effect means 
that this second ratio here is not exactly identical to that first ratio here. The deviation 
between these two ratios, this quantity delta, is called the hyperfine anomaly. And this is often 
a very small number, it's in the range of at most a few percent. So the fact that it is small 
means that what we have discussed here is a small effect, but it is definitely there and can be 
experimentally observed. So if we go back to our overview slide, we can summarize that we 
have seen the regular dipole contribution, where the hyperfine field is generated by the orbital 
and the spin-dipolar contributions, and then corrections due to electrons that enter the 
nucleus. One correction that in many cases is actually the dominant contribution, and that 
does not depend on the size of the nucleus, it only depends on the spin imbalance inside the 
nucleus, and a second correction, the Bohr-Weisskopf effect, that does depend on the size of 
the nucleus. And one would vanish if the nucleus becomes a point.   


