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In this session we will examine the first non-zero term in the multipole expansion for a current 
distribution of the nucleus interacting with the current distribution of the electron cloud. This 
first non-zero term is the dipole term, so we will examine the interaction between the nuclear 
dipole moment with the dipole field by the electron cloud, and that is the magnetic field that 
the electron cloud generates at the position of the nucleus. We will do this first for the case of 
free atoms, the magnetic hyperfine interaction in free atoms. And you will realize that most of 
the mathematical formalism that we need for this you have seen already in a different 
context. When you have discussed coupling of angular momenta, more specifically L-S 
coupling, then you have done something that is nearly identical to what we need here. Here 
we will need something we will call I-J coupling. So what will we do? We will first go back to L-
S coupling, summarize what you have learned about that in previous courses and then 
immediately apply it to I-J coupling. Where did you meet before the coupling of L and S 
angular momenta? It was when you were constructing term symbols for atoms, symbols that 
characterize the state of an atom. Let's look at one specific example, the carbon atom, where 
we have two 1s electrons, two 2s electrons, both form closed shells, and then two p electrons 
in a shell that is not completely filled. And for the carbon atom you then wonder how can we 
distribute these two p electrons over all available states in that shell. There are quite a 
number of possibilities, you can put the first p electron in one of the three available p orbitals, 
px, py, pz, or m equals minus 1, m equals 0, m equals plus 1, and that with either spin. So six 
possibilities. The same can be done for the second p electron, again six possibilities, so 36 
possibilities to put these two p electrons. Which of these 36 ones is the one that has the 
lowest energy? Which one is the ground state that will appear in nature? That was the kind of 
question you tried to solve. And you have seen rules for that, Hund's rules, which is a kind of 
algorithm to select the ground state from these 36 possible states. What do the Hund's rules 
tell us for the carbon atom? The first Hund's rule tells us we have to select those states where 
the total spin angular momentum is maximal. How do you find the total spin angular 
momentum? You sum the ms values and take the absolute value out of that. So we have two 
electrons with spin 1.5, ms is 1.5, how can we get a maximal value? By having twice the same 
size of ms, and then we will have a total spin of 1. So we should only consider states where s 
equals 1. Second Hund's rule tells us for all of the states that survive after the first Hund's rule, 
take the one where the total orbital angular momentum L is maximal. You find the total orbital 
angular momentum by summing the ml values and take the absolute value out of that. 
According to our first Hund's rule, the spin of our two electrons is identical, which means they 
cannot be in the same orbital any longer. So we have to put them in two different orbitals, so 
two different ml values, and the absolute value of the sum of these two ml values should be as 
large as possible, so the only way how we can realize that is by putting one electron in an 
orbital with ml equals plus 1, and the other in an orbital with ml equals 0, or minus 1 and 0. 
That gives a sum that is 1, so L equals 1, second Hund's rule. How many of our original 36 
states do we still have left after these first two Hund's rules? There are two ways in which you 
can count that. You can say, well, I have s equals 1, L equals 1. How many possibilities 
correspond to s equals 1? 2s plus 1, 3. And the same for L equals 1, 3 possibilities. So 3 times 
3, 9 possibilities to realize s equals 1 and L equals 1 out of the 36 original possibilities where 
we started from. Another way to count the same is to look at the total angular momentum J, 



which can be 2, 1 or 0. A vector with J equals 2 has 5 different orientations, 5 different z-
components. A vector with J equals 1 has 3 different orientations, and one with J equals 0 has 
1 possible orientation. So that's 5 plus 3 plus 1, 9 different possibilities out of 36. The same as 
we found by our first way of counting. The question is now, which of these 9 states is the 
actual ground state? And that is where the coupling of angular momentum, the interaction 
between the L vector and the s vector appears. If there is no interaction between L and s, we 
cannot decide. All of these 9 states have the same energy, they are degenerate. If there is an 
interaction, and that interaction will be spin-orbit coupling, spin s, orbit L, if there is an 
interaction, then a third Hund's rule pops up that will allow to select the states with the lowest 
energy. And that third Hund's rule was, if your shell is less than half-filled, then the ground 
state is the one with minimal J, if your shell is more than half-filled, the ground state is the one 
with maximal J. In the situation of the carbon atom, we had 2 out of 6 electrons, our shell is 
less than half-filled, so it's the situation with minimal J that has the lowest energy. And that is 
illustrated here on this diagram. So at the left of the diagram, there is no interaction between 
L and s, all 9 states are degenerate, at the right we have switched on spin-orbit coupling, 
Hund's third rule, then the J equals 0 situation is the one with the lowest energy. The values 
that you see here on this diagram are not taken arbitrarily, so these values are calculated, and 
you probably learned how to calculate them, we will repeat that calculation when we will talk 
about i-J coupling in a few slides from now. You see this situation illustrated on this picture 
that comes from an actual atom. So we have here 3 levels that correspond to 3 states, 3P2, 
3P1, 3P0, so that means states with L equals 1, that's what the P indicates, s equals 1, that's 
what the 3 indicates, and 3 different values of J, 2, 1 or 0, and the small energy differences 
between them were the fine structure of this atom. If you compute the actual values of these 
3 levels, the energies that correspond to these 3 levels, then you will notice some regularities, 
and one of these regularities you called the Linde interval rule, that states that the ratio 
between the separation between the J equals 2 and J equals 1 level, and the separation 
between the J equals 1 and J equals 0 level, this ratio equals J over J minus 1, so in this case 2 
over 1, 2. So the long arrow here is twice as long as the shorter arrow. And that does not hold 
only for the case J equals 2, 1 and 0, that holds for any value of J, Linde's interval rule. 
Everything I told so far is something you more or less have seen in previous courses. Let's now 
translate that to the hyperfine interaction in a free atom, because also here we have 2 angular 
momenta that will be coupled, that will interact with each other. We have the spin angular 
momentum of the nucleus, I, which has 2 I plus 1 possible orientations, the different 
orientations, quantized orientations of the nucleus, and there is the electron cloud that has a 
total angular momentum J, the one we just constructed for the electron cloud of a free atom 
in the previous slides, and this one can have 2 J plus 1 possible orientations in space. We 
wonder now, what is the mutual orientation of I and J that corresponds to the lowest energy 
of the atom. If there is no interaction at all between I and J, then all these states will have the 
same energy. If there is an interaction, one or a few will have a lower energy than others. 
Well, we know there is an interaction, that is what we constructed in the dipole term of the 
current-current interaction. The I angular momentum is related to the nuclear magnetic 
moment, a dipole moment, and that will interact with a property of the electron cloud, the 
hyperfine field, the magnetic field, due to the electron cloud at the position of where the 
dipole moment is, at the position of the nucleus. So all 2 I plus 1 times 2 J plus 1 possible 
orientations of nucleus and electron cloud will be split up and a particular orientation will 
correspond to the ground state. The overall situation, so the orientation of the nucleus and 
the orientation of the magnetic field due to the electron cloud, that we can describe by 1 



angular momentum. That is exactly what coupling of angular momenta expresses. You have 1 
angular momentum, say L, and the other angular momentum, say S, you examine mutual 
orientations and you express that by a new total angular momentum J. Here we have 1 
angular momentum I, another angular momentum J, we examine their mutual orientation and 
we express that by a new angular momentum F. And quantum mechanics tells us that the 
possible values of F are restricted to values that appear in this list here, starting from I plus J to 
the absolute value of I minus J. Every different value of F corresponds to a different mutual 
orientation of I and J. The largest value of F, I plus J, is a situation where I and J are oriented 
parallel to each other and are pointing in the same direction, if you express it classically. While 
the lowest possible value of F, corresponding to I minus J, is one where the nuclear spin and 
the electron magnetic field are pointing opposite to each other. Let us express that a bit more 
quantitatively. What is the quantum meaning of a nuclear magnetic dipole moment? Well, we 
have to associate a magnetic dipole operator to this, and quantum mechanics tells us that this 
particular expression here is the dipole operator that corresponds to the dipole moment. So 
you take the spin operator I, and you have some constants in front of it. This I here is the value 
of the spin, h-bar obviously has its normal meaning, and this mu here is what experiment 
would measure as the magnetic dipole moment of the nucleus. You can imagine it classically 
as the magnitude of the dipole moment vector of the nucleus. In a very similar way, you can 
construct an operator that would give you the magnetic field at the position of the nucleus 
generated by an electron cloud with total angular momentum J. So that would be the J 
operator multiplied by a vector that contains the value of the angular momentum quantum 
number J, h-bar, and the length of the magnetic hyperfine field vector, or what would be 
experimentally measured as the magnetic hyperfine field BJ. With these two operators, we 
can construct the dipole term in the current-current Hamiltonian, and that would be this 
minus mu times B. But now we have the explicit expressions for these two operators, so we 
can fill them out, and we find something that depends on a dot product between I and J. 
When you discussed LS coupling, you would have found something here that depends on a dot 
product between L and S, that would be your spin-orbit Hamiltonian. So now it is our magnetic 
hyperfine field Hamiltonian. And in order to go from this expression to the next one, we apply 
a clever trick that you also have used when discussing spin-orbit coupling. You introduce the 
new angular momentum that combines the previous two, I and J, which is our F. This F 
squared is identical to I plus J squared. You work out the product, and you see here a way to 
express I dot J in terms of F squared, I squared, and J squared, which is what is written here in 
the last line. Now we come to the point where we can use perturbation theory. We have now 
a perturbing Hamiltonian, our mu dot B. We know the states of the unperturbed system, the 
system where there is no interaction between I and J. The unperturbed system can be 
described as direct product states between I and J, but can also be described equivalently by 
the total F. So these F are states of the unperturbed system. What this perturbation theory 
tells us, we have to make matrix elements of the perturbing Hamiltonian in the states of the 
unperturbed system. And because we had a degenerate situation here, we have to write this 
matrix of matrix elements. So we take the perturbing Hamiltonian, squeeze it between the F 
equals 0 states, F equals 1, F equals 0, and so on, we make for this particular example, where F 
can range from 0 to 3, we make this 4 by 4 matrix. Do we know what are the values of these 
matrix elements? Yes, because these states F, they are eigenstates of the F squared operator, 
but also eigenstates of the I squared operator, and eigenstates of the J squared operator. So 
we know what is the effect of F squared operating on F, it's F times F plus 1 times H bar 
squared, and the same for I squared and J squared. So we can completely work out these 



matrix elements, and if we know the states I and J, and if we know how they are oriented with 
respect to each other, leading to one particular value of F, then we can fill out all the numbers, 
and we have the value of this matrix element. If we do this for all matrix elements in our 
example of 4 by 4 matrix, we get this one here, we find a matrix that is already diagonal, so no 
need to do an explicit diagonalization step, we can read out the values of the different levels 
from the diagonal. And that is what is done in this particular example. So for a state I equals 3 
halves and J equals 3 halves, if there is no interaction between the nuclear dipole moment and 
the magnetic hyperfine field, then all these states are degenerate. If we switch on the 
magnetic dipole interaction, then the energy of the system will depend on the mutual 
orientation between I and J. So in this case here, it turns out that if I and J are opposite to each 
other, which means F equals 0, then the energy is maximal. When I and J are parallel to each 
other, I equals 3, then the energy of the system is minimal. With the expressions on the 
previous slide, you can also work out this ratio here, the energy difference between the state 
with a value F and a value F minus 1, compared to the energy difference of the state with F 
minus 1 and F minus 2, and that ratio is identical to F over F minus 1, which is the Landé 
interval rule, but now for IJ instead of for LS. And this is an exact formalism when you apply it 
to really free atoms. It's an approximation, a qualitative picture, if you would apply it to atoms 
that appear in ionic compounds, in salts. And there the picture of a free atom-like electron 
shell that can be characterized by a total angular momentum J is still qualitatively valid, and 
therefore also the splitting into these different hyperfine levels will be qualitatively valid.   


