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The first multipole correction that we will explicitly examine is something which we will call 
the electric monopole shift. Where does it fit in the table we saw in a previous session? Let's 
first look at a situation which you knew already, which is the interaction here in the upper left 
corner, the interaction between the monopole moment of a nucleus and the electric potential 
due to the electrons at the position of the nucleus. Just to fix the ideas, let's see what this 
expression would be for the well-known case of the hydrogen atom. We have to write the 
monopole moment of the hydrogen nucleus, and I just literally fill out the general expressions 
we have seen before, and we find that the monopole moment of the hydrogen nucleus is the 
charge of the nucleus, it would be with z equals one. The monopole field, I fill out the general 
expression, and what does appear in the last line? That is the electric potential due to the 
electron distribution, and at which point do you want to know this electric potential? Well this 
is the electric potential at the position of the nucleus. So how do you find then the monopole 
energy? You make the dot product between this monopole moment and monopole field, and 
in this case both are scalars, so the dot product becomes a normal product, and this is then 
finally the electrostatic energy of a point nucleus interacting with an electron distribution. If 
this would be for hydrogen, you would have in this way for the different electron states, you 
would have the different energy levels of the non-relativistic hydrogen atom. What we 
stressed in the gravitational example was what changes to this picture if the nucleus gets a 
different shape, in particular if the nucleus deviates from spherical symmetry. That would 
mean going down in this list. That will be a topic for next sessions, today we will concentrate 
on what will change if the condition which we could apply, that all nuclear coordinates are 
smaller than all the electron coordinates, if this condition is not fulfilled any longer. So that 
means staying on the monopole line in the matrix, but going to the right. So that is what we 
call in general terms the influence of overlap. The electron charge distribution and nuclear 
charge distributions will be allowed to overlap in some sense, and these overlap contributions 
are series expansions themselves, so you can describe them as a first order overlap 
contribution, second order overlap contribution, and we will not really use the term overlap 
contribution, but rather the term shift. So you will have a first order monopole shift, first order 
quadrupole shift, first order hexadecapole shift, the latter one is way too small, we will not 
discuss them, second order monopole shift, second order quadrupole shift, which is very small 
again, will not be discussed. So how does this first order monopole shift look like? This is again 
the expression for a general atom, some terms that come from the nucleus and the kinetic 
energy of the electrons, and then something that depends on the monopole moment of the 
nucleus, E times Z, multiplied by the potential due to the electron cloud at the position of the 
nucleus. That is the regular monopole term. In the gravitational example we saw that if we use 
this Taylor expansion, solving the multipole expansion in a Cartesian approach, then we could 
identify a term that was due to this overlap, and that term was actually that first order 
monopole shift. We will not re-derive it here, just remember how it looked like, so we had 
some constants multiplied by the mass density of mass distribution 2 at the origin of the axis 
system, which means at the center of mass of mass distribution 1, and this multiplied with 
something as the mean square radius of mass distribution 1. If we would translate this 
expression for the gravitational problem into operators in order to apply it to a quantum 
situation, then we have identified the term we need. So we have to wonder what is the 



operator that would give us the charge density of the electron cloud at the center of the 
nucleus. You after some thinking you will realize that you can express this in this way. You take 
the electron wave function, and now take the matrix element of this wave function with a 
Dirac delta operator at the origin. So this operator will take out from this integral, from this 
dot product, only the contribution at the origin at the center of mass of the nucleus. So that's 
a straightforward operator translation of this classical property. For the mean square radius of 
the nucleus it is even more straightforward, so the charge density of the nucleus you can write 
as wave function complex conjugated times the wave function, and with the R square 
operator in between. So this is this diagonal matrix element. So our perturbing Hamiltonian 
for the monopole shift, for the first order monopole shift will be this delta operator times the 
R squared operator. And this has to be evaluated in the eigenfunctions of the unperturbed 
system. So that would lead to this energy correction, so this third term is an energy correction 
due to the overlap between nuclear and electron charge distributions. It's useful to ponder the 
structure of this term for a while. So this second term here, the regular monopole interaction, 
you could write it as Q tilde, and I temporarily use this symbol Q tilde as the monopole 
moment of the nucleus, so E times Z, multiplied by whatever is left, and if you inspect the 
dimensions you will recognize what we had before, the potential at the position of the nucleus 
due to the electron cloud. Well this correction term, the first order monopole shift, you could 
force it in the same structure, you could isolate the monopole moment of the nucleus, Q tilde, 
multiplied by everything else, and this must have, again, the dimensions of a potential. This is 
an extra contribution to the electric potential at the position of the nucleus. But whereas the 
monopole field depends entirely on the properties of the electron cloud, in these brackets 
here there is nothing that does not depend on the electrons, whereas this term depends only 
on the electron cloud, this additional potential at the position of the nucleus depends on 
properties of the electron cloud, namely how many electrons are present in the center of the 
nucleus, but also on a property of the nucleus, the mean square radius of the nucleus. So it's a 
potential that is nucleus dependent and electron dependent. When does this potential 
disappear, so when do we not see the presence of this additional interaction, well when there 
are no electrons inside the nucleus, so when this rho e is zero or when the nucleus is exactly a 
mathematical point and not something spherical with an average radius. Are there electrons 
inside the nucleus, because if that isn't the case then we don't have to care about that term at 
all. In order to examine that, let us go back to the hydrogen atom. If you go to this link here at 
the top, you would find the mathematical expressions for the radial part of the different 
eigenstates of the hydrogen atom. What we will need is the difference between the S 
functions, radial part of the S functions and anything else, and that has been summarized in 
this picture here. So the radial part of in this case a 2S wavefunction of hydrogen is drawn in 
red, the radial part of a 2P wavefunction of hydrogen is drawn in blue. The horizontal axis 
starts at the left at zero, which is the center of the nucleus and goes up to infinity. And what 
do you see, the S wavefunctions and only the S wavefunctions will have a non-zero value at 
the origin of the nucleus. At least in a non-relativistic picture, if you would solve the hydrogen 
atom relativistically, then you would see that a particular kind of p-electrons, the p-one-half 
electrons with relativistic quantum number kappa being one-half, these p-electrons also have 
a non-zero probability to be inside the nucleus. But even in the relativistic picture, nothing 
more than the S and the p-one-half electrons. Anyway there are electrons that can be inside 
the nuclear volume, so these will give rise to such a first order electric monopole shift. That 
electric monopole shift is always positive, if you inspect the expressions you have a minus sign 
in the expression, but the charge density of the electrons is negative as well, so that gives a 



positive contribution. And this positive contribution will depend first of all on how many 
electrons are inside the nucleus, and second on the radius of the nucleus. And the latter gives 
you a first way to see where this can be experimentally detected. Imagine that you have two 
isotopes of the same element, so an additional neutron in one of the isotopes, that will modify 
the average radius of the nucleus. So in one of the isotopes, the radius of the nucleus will be 
larger than in the other isotope. So that will influence this first order electric monopole shift. 
The energy levels, the atomic energy levels of two different isotopes of the same element will 
not be exactly identical. An example of this effect is shown in this diagram here for the lithium 
atom, where you see the energy levels for lithium 6 compared to lithium 7, and compared to a 
hypothetical lithium atom with a nucleus that has an infinite mass. We need to distinguish two 
effects here, because remember the infinite mass of the nucleus was one of the 
approximations you made in the very beginning, and I said that we wouldn't drop that 
approximation explicitly, because if we would need to do so, then there was a straightforward 
classical correction that we could apply to take the finite mass of the nucleus into account. 
Well this classical correction is present in this picture, part of the reason why the energy levels 
of lithium 6, 7 and infinity are different is due to that finite mass correction. But another part 
of the reason of the difference is the difference in radius between lithium 6 and lithium 7. So 
part of the reason why all these energy levels in these three isotopes are different is due to 
the first order electric monopole shift. The first order electric monopole shift is experimentally 
quite easy to determine, and some of the nuclear methods that we will meet in the second 
half of this course will explicitly measure this. It will turn out to be a very useful property to 
identify positions in crystals. In a few very exotic cases that we will never meet in practice, one 
can even see the presence of this second order monopole shift, that is always many many 
times smaller than the first order monopole shift. How can you see that it is smaller? Well the 
first order monopole shift depends on the square of the nuclear radius, which is the square of 
a very small number, while the second order monopole shift depends on the fourth power of 
the same very small number, so it will be many orders of magnitude smaller in general. But 
there are a few exotic cases, like the case of muonic atoms, where you can detect the 
presence of this term. So what is a muonic atom? It's an artificially constructed atom, where 
one of the electrons of the atom is replaced by a muon, a muon that has more or less the 
same properties of the electron, except for the fact that its mass is 200 times heavier than the 
electron. That will bring the muon much closer to the nucleus than the electron is, and 
therefore the probability to find the muon inside the nucleus will be also much larger than it is 
for the electron. So that will give rise to a much much larger value for the first order monopole 
contribution, for the first order monopole shift, and as a result also the second order 
monopole shift will be larger and will be detectable. Now muonic atoms have been produced 
in the 60s, nowadays I don't think there are facilities anymore available where this can be 
produced again, but the effect is there and has been observed.   


