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In this session we will combine the concept of a multipole expansion with the concept of 
perturbation theory. Multipole expansion that we discussed a few sessions ago, and we 
applied it to a classical system of two gravitationally interacting mass distributions. We also 
discussed perturbation theory, and now we will combine these two concepts. We will apply 
the multipole expansion to a quantum system, and we will realize how important perturbation 
theory is in order to turn that into manageable expressions. Let us first look at the ingredients 
which will appear in our problem. What is our problem? We have a nucleus interacting with an 
electron cloud. So let's first formally describe a nucleus, a free nucleus, there are no electrons 
around yet. The Hamiltonian that describes this free nucleus is a Hamiltonian that gives you 
the kinetic energy of the different nucleons, protons and neutrons inside the nucleus, and the 
strong interaction between the nucleons. If we would know that Hamiltonian, and nuclear 
physics is not yet to that level that it completely knows it, but if we would know that 
Hamiltonian we could apply it to the nuclear states and find the eigenvalues and eigenstates 
of a nucleus. These are these levels that are separated by a few kiloelectronvolts to 
megaelectronvolts that we saw in the first very important picture about this course. Then we 
turn our attention to the electrons, we forget about the nucleus and we look formally at a 
system of interacting electrons, there is no nucleus with which they interact. Then we have 
completely analogously to the nucleus problem the kinetic energy of the electrons and a term 
describing the electron-electron interaction. Then we can apply this Hamiltonian to a set of 
electrons and if there is no nucleus around we will find unbound solutions and these electrons 
just repel each other and try to go away from each other as far as they can. In the next step 
we describe these two separate problems, the free nucleus and the free electrons, in one. So 
there is still no interaction yet between nucleus and electrons, but we describe the two 
systems formally as one system. So our eigenvalues will be the sum of the eigenvalues of the 
nuclei and the eigenvalues of the electron system, the eigenstates will be direct products 
between the nuclear states and the electron states and the total Hamiltonian of the system is 
a Hamiltonian that works only on the nucleus subspace and a Hamiltonian that works only on 
the electron subspace. Why do we write that problem in such an admittedly rather artificial 
way? Well, because now it becomes very easy to switch on the nucleus-electron interaction 
and that switching on is represented by an extra term to the Hamiltonian that operates as well 
on the nuclear space as on the electron space. And by giving them the symbols Q-hat and V-
hat you already get a hint to which kind of quantity this will be. This nucleus-electron 
interaction can be potentially very complicated, especially if the nucleus has a complicated 
shape, that is what we studied in the gravitational example, and therefore it will not be 
surprising that we can manage that complication by making a multipole expansion of that 
particular term. And in this way we can recognize in this problem again the familiar energy 
scales, we had already the nuclear energy scales, keV to MeV, if we take the first order term, 
the monopole term of this interaction Hamiltonian, then we have the atomic energy levels, 
energy of electron volts, and if you deal with the relativistic version of the problem, then you 
can have this MeV fine structure splitting, and if you now consider the higher order multipole 
terms, the more fine details of the electron-nucleus interaction, then you will find this micro 
eV splitting that corresponds to the hyperfine structure. So that is a formal translation of our 
gravitational problem into a nucleus interacting with electrons. Now we have to merge this 



with the concept of perturbation theory. Look at the Hamiltonian this way, we have the 
nuclear Hamiltonian which we know, and knowing doesn't mean that we can completely solve 
the nuclear problem from scratch, but we know the nuclear properties from experiments, and 
we can represent the relevant Hamiltonian of the nucleus by something that contains that 
experimental information. For instance, the spin operator of the nucleus, if that is for a spin 
5.5 nucleus, that will be a spin 5.5 operator. So the nuclear part of the Hamiltonian is known, 
the interaction between the nucleus and the electron cloud up to the monopole term, that is 
something you studied in quantum physics, you solve the hydrogen atom in that way, and 
that's your usual way to think about atoms. So up to this point the Hamiltonian is known, and 
now you add the extra interactions due to the complicated shape of the nucleus, and that will 
be your perturbing Hamiltonian. So this is where you need perturbation theory. You will make 
use of the knowledge of the system which you already solved, your quantum physics up to 
now, in order to find the eigenvalues and eigenstates of the more complicated system that 
you don't know yet. That is repeated in this picture here, the first half of the slide, that is 
something you already knew, the eigenvalues and eigenstates of an atom up to the monopole 
term, and now you use these eigenstates together with the Hamiltonian that describes the 
first order corrections due to the shape of the nucleus, and by perturbation theory you find 
the energy corrections that are due to this complicated shape of the nucleus. Let us more 
exactly make the transition from the gravitational problem to the problem of an atom. This 
first line here gives a chain of reasoning that starts at the very left with a dot product between 
two identical nuclear states, which you can represent by the symbol psi n, or by the symbol i, 
referring to the spin of the nucleus, and because these are eigenstates of a quantum system, 
these states are normalized so that dot product should give 1. You could also write that dot 
product in an integral expression, integral over the entire space occupied by the nucleus of the 
complex conjugate of the nuclear wave function times the nuclear wave function itself, and in 
this expression you recognize something that is related to the charge density of the nucleus, 
or the probability density of the nucleus, so if we take that symbol rho index n as meaning the 
charge density of the nucleus, well if we integrate over that charge density we get the total 
charge of the nucleus, so if we divide by the total charge we get 1 again, as our normalization 
requested. A set of identities that helps to recognize the symbols that we used at the very 
right in the gravitational problem to something at the very left that is more familiar to the 
quantum context. You can do the same for the electrons. And if we now look at our 
fundamental expression for the gravitational potential energy in the system of interacting 
mass distributions, that was this expression here, well by this identification of symbols we can 
transform it into a quantum expression. The full energy of an atom, energy due to the 
interaction between the charge distribution of the nucleus and the charge distribution of the 
electrons can be described in this way, and what is the complicated feature here, this is this 1 
over r electron minus r nucleus for which we have to use a multipole expansion. If we do that 
multipole expansion with the Laplace expression, and if we assume for a while that all nuclear 
coordinates are smaller in length than all electron coordinates, then we can write this 
expression here for the Hamiltonian. And this we can fill out in our formal description that we 
developed in the previous slides, so this complete electrostatic energy depends on a nuclear 
part that is known, that corresponds to this kilo electron volt to mega electron volt separation, 
a part that is related to the nucleus electron interaction, and that corresponds to this right 
hand side of the picture where up to the fine structure term you take only the monopole term 
of this nucleus electron interaction into account, and if you go to the hyperfine structure you 
take the higher order multipoles into account. How do these higher order multipoles look like, 



well we have them separated here in the second line of this slide, so the monopole term 
enters here in the first line, all higher order multipoles are in the second line, and in a 
quantum language you could write them in this way, so for instance the nuclear quadrupole 
moment tensor of a nucleus would be one where n equals two, and which has five 
components Q, and that is found from properties of the nuclear state I, so you make, you 
squeeze a particular operator R to the power n times this spherical harmonic in between the 
nuclear state I, and you find the corresponding component of the nuclear quadrupole moment 
tensor. But this can be generally done for all higher order multipoles. If we focus on the 
charge-charge interaction, the interaction between the nuclear charge distribution and the 
charge distribution of the electron cloud, then the leading term in this set of higher order 
multipoles will be the quadrupole term, because the dipole term turns out to vanish, that is 
something we have shown before. The next term would be the octupole term, which vanishes 
as well, so the next next term that is non-vanishing would be the hexadecapole term, which is 
really small. So what we will have to focus on is finding matrix elements of this operator, 
which is indicated here as perturbing operator H1, into the states of the unperturbed system. 
That was for the charge-charge interaction. How would that look like for the current-current 
interaction? Let's just in one slide summarize the mathematical reasoning. So we have a 
current distribution due to the electron cloud, a current distribution which is indicated here by 
a current vector J at the position R', and that current distribution gives rise to a vector 
potential, A of R. Now we wonder what is the energy represented by the nuclear current 
distribution, Jn, in the presence of this vector potential due to the electron current 
distribution, and that's this expression here. Now you fill out the electron vector potential that 
was on the first line, and you get this general expression for the current-current interaction 
energy based on the two current distributions Jn and Je. And again that's a complicated 
expression to solve, especially if these current distributions are non-trivial, so you make a 
multipole expansion, which is mathematically somewhat more involved now because you are 
dealing with these vector properties, J, but it can be done. Mathematicians have developed 
that formalism. So you make a multipole expansion, and the leading non-zero term is the 
dipole term, where you have the obnuclear property, the magnetic dipole moment of the 
nucleus, interacting with an electron property, the magnetic field due to that electron current 
distribution at the position of the nucleus. That is our leading perturbing Hamiltonian for the 
current-current case. So our complete perturbing Hamiltonian, where we take the charge-
charge interaction as well as the current-current interaction into account, will look like this 
one. The quadrupole term from the charge-charge multipole expansion, the dipole term from 
the current-current multipole expansion. That is summarized in this overview table here. So 
what do we see? The first two lines deal with the charge-charge interaction. The third and 
fourth line deal with the current-current interaction. And in the vertical direction we have 
monopole, dipole, quadrupole, octupole contributions. Let's concentrate for the time being on 
the situations without overlap, which means that the property Rn is smaller than any Re is 
always fulfilled. So that will be this first line here for the charge-charge interaction, and the 
third line for the current-current interaction. Current-current interaction will come in later 
chapters. For the next few sessions we will deal with the charge-charge interaction. So what is 
the situation you have studied so far? That is the one that is labeled by A, and that letter A will 
return in the table on the next slide. So that is one where you only looked at the monopole 
contribution of the charge-charge interaction. We have seen in the gravitational case that 
there is a correction which is called the quadrupole interaction, and which is due to the shape 
of the charge distribution of the nucleus. If we allow overlap, if we allow Rn being larger than 



some of the Re's, and we will see in the next session an example of that, so if we would allow 
for that more general situation we will get a correction term here, actually a series of 
correction terms. And the same can be told about the quadrupole interaction, but there this 
correction will be extremely small. So only for the charge-charge interaction this same 
information is summarized in a slightly different table, and in order to identify the different 
contributions you have the same letters A, B, C, D, E here as on the previous slide. So we have 
in the first column all contributions that appear in the situation without overlap, so the 
monopole, quadrupole, hexadecapole contributions. And now for each of these multipole 
contributions there is an infinite series of corrections that become smaller and smaller if you 
would go in the horizontal direction in this table, an infinite series of corrections that takes 
into account this overlap. So there will be a first order overlap correction to the monopole 
term, a second order overlap correction to the monopole term, and so on, and then a first 
order overlap correction to the quadrupole term, a second order overlap correction to the 
quadrupole term, and so on. Whatever is indicated here in this table in red is very very small 
and will not be discussed in this course, whatever is indicated in black will be discussed at 
some point. So now we have understood why we need perturbation theory if we want to use 
the multipole expansion in a quantum situation, and we have an overview of the kind of terms 
this will lead to, interactions that we will focus on in the next sessions.   


