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Hyperfine interactions appear in the context of atoms, nuclei, electrons, small objects where 
quantum mechanics is important. And that scares away some people. Therefore, I would like 
now to develop the formalism of hyperfine interactions in a purely classical mechanics 
context, namely in a situation where only gravitation works. So no quantum physics appears at 
all here. You can forget of all complications related to quantum physics. We can focus only on 
the nature of the hyperfine interactions themselves. Our model system to do this will be two 
mass distributions. You see here at the left mass distribution 1, a continuous mass 
distribution, and the vector r1 probes any point inside this mass distribution. The other mass 
distribution is m2 and the vector r2 probes any point inside mass distribution 2. We describe 
these vectors and these mass distributions into an axis system. That axis system is given here. 
And for convenience, we will fix this axis system. We will fix the origin of this axis system in the 
center of mass of mass distribution 1. The vector r0 is a vector that connects the origin of the 
axis system with the center of mass of mass distribution 2. We will now ask what is the 
gravitational potential energy of this system, where we assume that both mass distributions 
are completely static. Everything is moving. Everything is frozen. We can do this in two ways. 
We can calculate the gravitational potential field of mass distribution 1 and then ask what is 
the energy of mass distribution 2 in that field. Or we can calculate the gravitational field of 
mass distribution 2 and ask what is the potential energy of mass distribution 1 in that field. 
And let's do it in that second way. Let us focus at a particular position r1 inside mass 
distribution 1. What is the field due to mass distribution 2 at that point? Well, so far we just 
write it as v of 2 at position r1. Which mass is present at that position? That's an infinitesimal 
part of mass distribution 1. So that's the mass density of mass distribution 1, rho 1, at that 
point r1 multiplied by an infinitesimal volume element dr1. That infinitesimal portion of mass 
times the local field by mass distribution 2. That is the contribution to the potential energy of 
that infinitesimal part of mass distribution 1. If we now integrate that over the entire mass 
distribution 1, we have the total potential energy. And that's what the first expression of this 
slide tells us. So we have now to specify how that v2 looks like. And that's a straightforward 
application of Newton's law. The gravitational potential due to mass distribution 2 at position 
r1 is an infinitesimal volume element of mass distribution 2, which is rho 2 times dr2, divided 
by the distance between the point r2 and the point r1. And this integrated over mass 
distribution 2 and multiplied by the gravitational constant. If we plug in that second equation 
into the first one, we get the equation here at the bottom, which gives you the potential 
energy corresponding to the gravitational interaction of these two mass distributions. And you 
clearly see that if you know how these mass distributions look like, if you know the 
expressions for rho 1 and rho 2, you have everything you need to work out this double integral 
and to find that gravitational potential energy. Of course, if these mass distributions are really 
general, if these shapes are weird, it will not be so easy to work out that double integral. 
That's a complication that physicists faced already a long time ago and they found a solution 
for that, or rather mathematicians found a solution for that. You can expand the division by 
the distance, this 1 over r2 minus r1. You can expand this according to what is given here the 
Laplace expansion. So this particular function can be written as a sum over n and q, where n is 
the order of spherical harmonics and q are components of spherical harmonics. So a sum over 
n and q of a product between spherical harmonics and a factor in front of that, which depends 



on distances inside mass distribution 1 and 2. The peculiar feature of this Laplace expansion 
are these symbols r smaller than and r larger than. So let's go back to the previous slide, where 
you see that this 1 over r2 minus r1 appears inside that double integral, so depending on 
where you are in the double integration, these vectors r2 and r1 change. For any step in that 
integration process, you always have to wonder which of the two vectors, r1 or r2, is the 
smallest of the two. The smallest of the two becomes r smaller than, the larger of the two 
becomes r larger than, and that assignment is not fixed. Depending on where you are in the 
integration process, the role of r1 and r2 can change. So that's a complication we have to keep 
in mind, but let's assume for a while that we can deal with that. So now you have this 
expansion, you plug that in into the double integral and you get the equation at the end of this 
slide here. Let's now make an assumption, because so far we haven't gained anything. Our 
double integral is still as complicated as it was before. Let us make an assumption and let us 
consider only mass distributions that are such that every vector r1 is smaller than any vector 
r2. That is a condition that is fulfilled by the cartoon where we started from. Any vector r1 
inside that first mass distribution is smaller than any of the vectors r2, even smaller than the 
smallest vector r2 that you can have. I draw a similar situation here in the lower right corner, a 
situation where the cartoon looks more like a nucleus interacting with an electron cloud, a 
nucleus in red with some general shape and a vector r1, which is called here a vector r, that 
probes the volume inside the nucleus, and the electron cloud in blue where we have the 
vector r2 or here a vector r' that probes any point inside the electron cloud. So also in this 
second cartoon here, the condition that every r is smaller than any r1 is fulfilled. So for a 
situation where this assumption holds, we will continue with our double integration. If that 
condition holds, then we can uniquely assign the vector r1 to the symbol r smaller than, and 
the vector r2 to the vector r larger than. If we do that, our double integration over that sum 
can be split up in a specific way. We can group all terms that depend on mass distribution 1, 
and we can group all terms that depend on mass distribution 2, and there is nothing in 
between that depends on mass distribution 1 and 2. So we can write this summation as a sum 
over still the orders of the spherical harmonics and their components n and q, and every time, 
in every term of the sum, there will be a product between an object q, which behaves as a 
spherical harmonic, it has order n component q, an object q that depends only on properties 
of mass distribution 1, you have the full expression for a general component of q here, and 
there are only properties related to mass distribution 1 here, and that is multiplied by 
something that depends only on mass distribution 2. So you have a full separation of the two 
objects, no cross terms between them. But that only holds if every vector r1 is smaller than 
any possible vector r2. Let's look at the lowest order terms in that infinite summation. So the 
0th order term, the 0,0 term, looks like this. You have the object q,0,0 complex conjugate 
times v,0,0, and there is only a 0,0 component. These objects q,0,0 and v,0,0, they are scalar 
properties. Two scalar properties that are multiplied to give what we call the monopole 
contribution to the gravitational potential energy. We have the full expressions of this q,0,0 
and v,0,0 on the previous slide, so just fill out n equals 0, q equals 0 here, and you will find 
expressions that are fairly straightforward to deal with, and you will recognize in this way that 
q,0,0 is a number that is nothing else than the total mass of mass distribution 1. While v,0,0, if 
you look at that expression there, that tells you what is the gravitational potential by mass 
distribution 2 at the origin of the axis system, and therefore at the center of mass of mass 
distribution 1. That would be the gravitational interaction between two point masses, which is 
obviously the meaning of the monopole approximation. Let's go one term further in the sum, 
and then we enter the what we call the dipole term. Now we have a product between an 



object q that has three components, q with superscript 1 can have components minus 1, 0 or 
plus 1, and the general expression for these is given here as first expression on this slide. So 
that is an object that is a vector, three components, that's a vector. The physical meaning of 
that object, the dipole moment, the gravitational dipole moment, is that it gives the position 
in space of the center of mass of mass distribution 1 with respect to the origin of the axis 
system. And you can see already here that as we have taken mass distribution 1, as we have 
taken the axis system to have its origin in the center of mass of mass distribution 1, this dipole 
moment vector will be 0 in our case. The dipole field is also a vector, we will look at its 
meaning soon, and the dot product between both, what you see here, the third equation is an 
expression for a dot product between two vectors in spherical notation. The dot product 
between these two vectors is the dipole contribution to the gravitational energy. Let's look in 
more detail to the meaning of this dipole moment vector and dipole field vector. We have 
these objects Q1 with subscripts plus 1, minus 1, or 0. If we group them in the way that is 
written there on top of this slide, you get an object which temporarily we will call Qx. And if 
you now fill out the expressions for Q1 minus 1 and Q1 plus 1, you will find the next equation, 
which turns out to be the integral over mass distribution 1 times x, the x-component of the 
vector r1. And you might recognize in this the x-component of the position vector of the 
center of mass of mass distribution 1. And in the same way you can find the y and z-
components. So indeed, these Q objects, they are related to the position vector of the center 
of mass. And in the same way, you could write the Vx, Vy, Vz, which is the opposite of the 
gravitational field of mass distribution 2 at the origin. So which gravitational field does mass 
distribution 2 produce at the origin of the axis system, so at the center of mass of mass 
distribution 1. That's the dipole term, and as we have seen that by our choice of the origin of 
the axis system, the position vector of the center of mass of mass distribution 1 is 0. The 
dipole term will not contribute to our gravitational potential energy. So the next term that will 
contribute will be the quadrupole term. And here the Q object is now an object of order 2 with 
5 components, plus 2, plus 1, 0, minus 1, minus 2, so a spherical tensor of rank 2. That will be 
the quadrupole moment of mass distribution 1. It will express how mass distribution 1 
deviates from spherical symmetry. And that tensor of rank 2 will be multiplied with another 
tensor of rank 2, which is the quadrupole field of mass distribution 2 at the origin of the axis 
system. And that can be interpreted as the gradient of the electric field by, sorry, not the 
gradient of the electric field, because we are working in a gravitational problem here, the 
gradient of the gravitational field of mass distribution 2 at the origin of our axis system. A dot 
product between these two vectors, between these two tensors of rank 2, gives us a scalar 
quantity, which is the quadrupole contribution to the potential energy. Let's zoom in on this 
quadrupole moment and quadrupole field for a while. So the quadrupole moment, if you 
make the full derivation, can be written in this way. An integral over mass distribution 1 of the 
mass density distribution rho 1 multiplied by this symmetric and traceless matrix. You can take 
it as an exercise to show that this matrix is indeed traceless. The interpretation of this 
quadrupole moment, which you might have encountered in classical mechanics courses 
before, is such that if you consider this in an axis system, which is a principal axis system, an 
axis system adapted to the symmetry of the problem, in such a principal axis system, this 
quadrupole moment matrix will become a diagonal matrix. And the largest component on the 
diagonal, that is conventionally called the z-component. So if that z-component is 0, you have 
a spherical mass distribution. If it is positive, you have an elongated mass distribution. And if it 
is negative, you have a squeezed mass distribution. The quadrupole moment tensor. The 
quadrupole field. The full expression can be shown to be like the first equation on this slide. 



Again a symmetric and traceless tensor. Again easy to show that it is traceless. And this 
expression is the one which you would have found if you have applied this Laplace expansion. 
Now there is an alternative way of making the same expansion. Not using this Laplace version 
with spherical harmonics, but something that looks like a Taylor expansion, but now for a 
function on a vector domain. Usually you use Taylor expansions in one dimension. You can do 
this also for vector functions. It's a little bit more involved, but it's the same concept. Now let's 
assume that we would have done this expansion using a Taylor expansion. Then we would 
have found for the quadrupole field tensor this 3 by 3 matrix. A matrix made by second 
derivatives with respect to the x, y, and z components of the gravitational potential by mass 
distribution 2 at the origin of our axis system. Is that a tensor with the same properties as the 
first on this slide? So yes, it's also symmetric. The order of differentiation doesn't matter. Is it 
traceless? Well let's make the trace and that's the last equation on this slide. The trace is the 
Poisson equation and for the Poisson equation we know this general relation. The Laplacian of 
the potential at the origin is proportional to the density of that same mass distribution at the 
origin. Well we had assumed that any vector r1 was smaller than any vector r2, which means 
that it is not possible for mass distribution 2 to be present at the origin of the axis system. So 
rho 2 at the origin of the axis system is zero and indeed so this Laplacian is zero. This matrix is 
traceless. We have all the properties we wanted. So here you see for those who are interested 
in the mathematical details how this Taylor expansion for a function on a vector domain looks 
like and it's with this expression b2 as it is indicated here that you can make this Taylor 
expansion of the gravitational potential energy. Imagine now that we would have made this 
spherical harmonics expansion, Laplace expansion and this Taylor expansion. In both cases we 
have monopole, dipole, quadrupole and so on terms only they do not look exactly identical. If 
you look at the details the monopole and the dipole terms will turn out to be completely 
identical and the difference is only in the quadrupole term. The first difference is in the 
quadrupole term. Therefore I write here this potential energy which is a dot product between 
the left object which is now the quadrupole tensor but found from the Taylor expansion with 
the gravitational field gradient the quadrupole field again found from the Taylor expansion. 
What you see here is not a matrix product because then the result would be a 3 by 3 matrix. 
It's really a dot product and the convention for such a dot product between such objects is 
that you multiply the 1,1 object with the 1,1 object of the second matrix plus the 1,2 object 
with the 1,2 component of the second matrix plus 1,3 times 1,3 and so on. So not a matrix 
multiplication but really a dot product. You can see that the quadrupole moment tensor as it is 
given here is not really a spherical tensor because it's not traceless. If you would calculate the 
trace here there is no reason why that object would be zero. We could make it traceless by 
subtracting 1,3 of the trace from every diagonal component and adding that back in at the 
end. So that's a decomposition of that Cartesian object into something that has the properties 
of a quadrupole moment and something else. The same you could do for the gravitational 
field gradient tensor. We had there the trace which was our Poisson equation and which was 
in general not necessarily zero, only zero if we are in the situation that is allowed by our 
assumption. So let's assume this is now more general and let's subtract 1,3 of the trace, so 1,3 
of the Laplacian of V2 at the origin and add that back again. So both these Cartesian tensors 
have been written as a sum of a spherical tensor plus something else. That is what this slide 
leads to. And now we make the dot product between that first sum of two tensors with that 
second sum of two tensors. And if you work it out you find first the dot product between the 
two spherical tensors which is what we found also after the treatment with the Laplace 
expansion. A few of the cross terms are zero and the other non-zero part is this dot product 



between two diagonal matrices which can be simplified up to the form you find here at the 
bottom. The mass density of mass distribution 2 at the origin of the axis system multiplied by 
something that you could interpret as a mean square radius of mass distribution 1. If our initial 
assumption that any vector r1 is smaller than any vector r2 is fulfilled then rho2 at zero must 
be zero and this term does not contribute. But if that condition would not be fulfilled, so if we 
would be in the more general case, that term survives. So here you see that the Cartesian 
expansion, the Taylor expansion is more general than the spherical expansion, the Laplace 
expansion with our assumption. The more general treatment leads to a correction term that 
depends on the mass density of mass distribution 2 at the origin. All of this can be summarized 
in this table. So let's first look at the first half which is the situation where there is no overlap 
between mass distribution 2 and mass distribution 1. With no overlap I mean this condition of 
r1 smaller than r2 is fulfilled. In that case we have monopole, dipole and quadrupole terms 
which always consist of a dot product between a property of mass distribution 1 with a 
property of mass distribution 2. In the monopole term this is a dot product between two 
scalars. In the dipole term this is a dot product between two vectors. In the quadrupole term it 
is a dot product between two tensors of rank 2. In the monopole term the monopole moment 
of mass distribution 1 is the mass of that mass distribution. The dipole moment of mass 
distribution 1 is the position vector of the center of mass of mass distribution 1 which was the 
zero vector. And the quadrupole moment of mass distribution 1 describes the deviation from 
spherical symmetry. The monopole field of mass distribution 2 is the gravitational potential by 
that mass distribution at the origin of the axis system. The monopole field of mass distribution 
2 is the gravitational potential by mass distribution 2 at the origin. The dipole field of mass 
distribution 2 is the opposite of the gravitational field by mass distribution 2 at the origin. And 
the quadrupole field of mass distribution 2 is the gradient of the gravitational field by mass 
distribution 2 at the origin. If you leave that particular assumption of R1 smaller than R2, you 
go to the situation with overlap which you can find more straightforwardly when you use a 
Taylor expansion of the 1 over R function. And here you find that the most important 
correction due to that overlap is a term that depends both on the size of mass distribution 1, 
its mean square radius, and the amount of mass of mass distribution 2 that is present at the 
origin of the axis system.   


