
PHY331 PART I: ADVANCED ELECTRODYNAMICS LECTURE 6

6 Multipole expansion and spherical harmonics

Charge and current distributions in a small region of space may be very complicated,
and the potentials will generally not be simple. For example, a water molecule is elec-
trically neutral as a whole, but one side of the molecule is slightly positive (+q), while
the other side is slightly negative (−q). If the two charges are separated by a distance d,
the potential of each is

Φ+(r) = −
q

4πε0|r|
and Φ−(r) =

q
4πε0|r− d|

. (6.1)

Using the superposition principle to find the scalar potential of the combined charges
Φ, we find (r� d)

Φ(r) = −
q|r− d|

4πε0|r||r− d|
+

q|r|
4πε0|r||r− d|

�
qd cosθ
4πε0r2

, (6.2)

where θ measures the angle between d and r. This is the so-called dipole potential. Note
that it is no longer a 1/r potential but falls off faster, with 1/r2. If, for some reason
the potentials in Eq. (6.1) had different charges q1 and q2 = −q1 − δ, then the scalar
potential would be

Φ(r) = −
q1

4πε0|r|
+

q1 + δ

4πε0|r− d|
�

δ

4πε0r
+
q1d cosθ
4πε0r2

. (6.3)

Now the scalar potential is a superposition of a monopole and a dipole contribution. In
general, the scalar potential of a charge distribution will have a multipole expansion, and
the same will apply to the vector potential. Let’s look at this in a bit more detail.

6.1 Multipole expansion of a charge density

Suppose that we have a localized (meaning enclosed in a volume V) static charge den-
sity ρ(r), which gives rise to a scalar potential

Φ(r) =
1
4πε0

∫
ρ(r′) dr′

|r− r′|
. (6.4)

Far away from the charge density, the potential looks mainly like that of a point charge,
but with some higher-order corrections. These corrections are the multipoles, and we
can find them by looking at the Taylor expansion of Eq. (6.4). Let

f (r− r′) =
1

|r− r′|
=

1√
(x− x′)2 + (y− y′)2 + (z− z′)2

. (6.5)

Now we make a Taylor expansion of f (r− r′) around r′ = 0:

f (r− r′) = f (r) −
3

∑
i=1
r′i

∂ f
∂ri

∣∣∣∣
r′=0

+
1
2

3

∑
i, j=1
r′ir

′
j

∂2 f
∂ri∂r j

∣∣∣∣∣
r′=0

+ . . . (6.6)
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Figure 10: The field at position r far away from a charge distribution ρ(r) can be expressed
conveniently in terms of a multipole expansion. O denotes the origin of the coordinate system.

This can be rewritten in compact form as

1
|r− r′|

=
1
r
− r′ · ∇

1
r

+
1
2
(r′ · ∇)2

1
r

+ . . .

=
1
r

+
3

∑
i=1

rir′i
r3

+
1
2

3

∑
i, j=1

ri(3r′ir
′
j − r

′2δi j)r j
r5

+ . . . (6.7)

where r =
√
r21 + r22 + r23 = |r| is the magnitude of the vector with components ri. After

substituting this into the generic form of the scalar potential in Eq. (6.4), we find

Φ(r) =
1
4πε0

∫
ρ(r′) dr′

r
+
1
4πε0

3

∑
i=1

∫ r′iri
r3

ρ(r′) dr′

+
1
8πε0

3

∑
i, j=1

∫ 3r′ir′j − r′2δi j
r5

rir jρ(r′) dr′ + . . . (6.8)

=
1
4πε0

[
Q
r

+
3

∑
i=1

Qiri
r3

+
1
2

3

∑
i, j=1

riQi jr j
r5

+ . . .

]
. (6.9)

The multipole moments of the charge distribution are the total charge Q, the dipole mo-
ment Qi, the quadrupolemoment Qi j, etc. They are defined as follows:

Q =
∫

ρ(r′) dr′ (6.10)

Qi =
∫
r′i ρ(r′) dr′ (6.11)

Qi j =
∫

(3r′ir
′
j − r

′2δi j)ρ(r′) dr′ (6.12)

... (6.13)
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The quadrupole moment has nine components, but it is easy to see that Qi j = Qji, and

3

∑
i=1
Qii =

3

∑
i=1

∫
(3riri − r2)ρ(r) dr =

∫ [(
3
3

∑
i=1
riri

)
− 3r2

]
ρ(r) dr = 0 . (6.14)

The quadrupole moment is therefore characterised by five independent variables.

6.2 Spherical harmonics and Legendre polynomials

It is clear from the previous section that we can continue the multipole expansion to
octupoles and higher, but it is also pretty obvious that the polynomials in the definitions
of Qi jk... get quite unwieldy very quickly. Luckily, there is a more systematic approach
based on spherical harmonics. These are functions of the spherical coordinates θ andφ of
a vector r, and the function f can then be written as

1
|r− r′|

=
∞

∑
l=0

+l

∑
m=−l

r′ l

rl+1

√
4π
2l + 1

Ylm(θ,φ)

√
4π
2l + 1

Y∗lm(θ′,φ′) (6.15)

with

Ylm(θ,φ) =

√
2l + 1
4π

(l +m)!
(l −m)!

eimφ

sinmθ

[
d

d cosθ

]l−m (cos2θ − 1)l

2l l!
. (6.16)

This is still rather complicated, but the advantage is that this is valid for all l. Note also
that the spherical harmonics are complex, but Eq. (6.15) is still real due to the sum over
m. You should think of the Ylm as basis functions that can be used to write arbitrary
functions (of θ and φ) as a series, just like any polynomial can be written as a series
∑n anxn, or a periodic function as a Fourier series. Like any proper set of basis functions,
the Ylm obey an orthogonality relation:

∫
dΩ Y∗lm(θ,φ)Yl′m′(θ,φ) ≡

∫ π

0
sinθ dθ

∫ 2π
0
dφ Y∗lm(θ,φ)Yl′m′(θ,φ) = δll′δmm′ , (6.17)

where we introduced the integration over the sold angle dΩ.
We can now define the Legendre polynomials as

Pl(w) =

[
d
dw

]l (w2 − 1)l
2l l!

, (6.18)

with normalisation Pl(1) = 1. In the spherical harmonics, we have set w = cosθ. The
Legendre polynomials also obey an orthogonality relation

∫ 1
−1
dw Pl(w)Pl′(w) =

2
2l + 1

δll′ . (6.19)

36



D Tensors and tensor fields

D.1 Cartesian tensor fields in 3-dimensional space

We start with the following list of tools:

– The 3-dimensional1 space with an orthonormal axis system XYZ.
– A number n which we call rank or order.
– A set of 3n functions fi : IR3 �→ /C : (x, y, z) �→ fi(x, y, z) = ai which

make every point (x, y, z) in the 3-dimensional space correspond with a
number ai (real or complex).

With these tools we now define tensor fields of rank n, and will see how they
behave when XYZ is rotated into X’Y’Z’:

– Scalar field: a tensor field of rank 0
Because n = 0 we need only 1 (= 30) function f1 : IR3 �→ /C : (x, y, z) �→
f1(x, y, z) = a1. With every point in space (x, y, z, ) corresponds a number
a1, which we call a (cartesian) scalar. The collection of all these scalars is
called a (cartesian) scalar field defined by f1. But not every f1 defines a
scalar field. The good f1’s are those for which the a1’s are invariant under
a rotation of XYZ into X’Y’Z’. This is the defining property for a scalar
field2:

[f1(x
′, y′, z′)] = [1][f1(x, y, z)] or [a′

1] = [1][a1] (D.1)

(x′, y′, z′) are the coordinates of the point (x, y, z) in the rotated sys-
tem X’Y’Z’. For later use we note that the matrix [1] is a 1-dimensional
representation3 of the group R3 of all possible rotations of XYZ.

1 Because of this choice for 3-dimensional space, we define here 3-tensors. One can
start also from m-dimensional space to define m-tensors. A physical example are
the space-time 4-vectors from general relativity.

2 The matrixnotation is redundant here, but is used for similarity with tensors of
higher rank.

3 Representing a group by matrices means associating a matrix with every element
of the group, such that the product between the two representatives of two group
elements equals the representative of the product of these two group elements. In
the present case, the matrix [1] is associated with every element of the rotation
group.
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An trivial example of a cartesian scalar field is the one defined by the
identical function f1(x, y, z) = α. Another example is the distance field

f1(x, y, z) =
√

x2 + y2 + z2.
– Vector field : a tensor field of rank 1

To define a tensor field of rank 1, 3 (= 31) functions fi are needed. Every
point in space (x, y, z) is now associated with a triplet (called a (cartesian)
vector) in the following way:

(x, y, z) �→
⎡
⎣ f1(x, y, z)

f2(x, y, z)
f3(x, y, z)

⎤
⎦ =

⎡
⎣a1

a2

a3

⎤
⎦ (D.2)

The collection of all these vectors is a (cartesian) vector field defined by
fi. Not every set of fi defines a vector field however. The required property
is that the triplets behave in the following way under a rotation of XYZ:⎡

⎣ f1(x
′, y′, z′)

f2(x
′, y′, z′)

f3(x
′, y′, z′)

⎤
⎦ =

⎡
⎣ b11 b12 b13

b21 b22 b23

b31 b32 b33

⎤
⎦
⎡
⎣ f1(x, y, z)

f2(x, y, z)
f3(x, y, z)

⎤
⎦ (D.3)

or ⎡
⎣a′

1

a′
2

a′
3

⎤
⎦ =

⎡
⎣ b11 b12 b13

b21 b22 b23

b31 b32 b33

⎤
⎦
⎡
⎣a1

a2

a3

⎤
⎦ (D.4)

or

a′
i =

3∑
j=1

bij aj (D.5)

Here bij is the cosine of the angle between the old i-axis and the new j-axis
(direction cosine). The matrices [bij ] form a 3-dimensional representation
of the rotation group R3.
An example of a cartesian vector field is:⎧⎨

⎩
f1(x, y, z) = αx
f2(x, y, z) = αy
f3(x, y, z) = αz

(D.6)

α must be a scalar. If α = 1, equation D.6 defines the field of position
vectors in space. If α = q

4πε0 (x2+y2+z2) , equation D.6 defines the electric

field of a point charge q put at the origin of XYZ.
– Tensor field of rank 2

To define a tensor field of rank 2 we need 9 (= 32) functions fi. Every
point in space (x, y, z) is now associated with a 9-fold object (called a
(cartesian) tensor of rank 2 ) in the following way:

(x, y, z) �→

⎡
⎢⎢⎣

f1(x, y, z)
f2(x, y, z)

. . .
f9(x, y, z)

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

a1

a2

. . .
a9

⎤
⎥⎥⎦ (D.7)
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The collection of all these tensors constitutes a (cartesian) tensor field of
rank 2 defined by fi. Not every set fi defines a tensor field however. The
required property is that the tensors (which we can arrange either as a
9 × 1-matrix or as a 3 × 3-matrix) behave in the following way under a
rotation of XYZ:

fij(x
′, y′, z′) =

3∑
k=1

3∑
l=1

bikbjl fkl(x, y, z) (D.8)

or

a′
ij =

3∑
k=1

3∑
l=1

bikbjl akl (D.9)

The subscripts i, j, k, and l all run from 1 to 3, which is a convenient
notation if the tensor is arranged as a 3×3-matrix. If the tensor is arranged
as a 9× 1-matrix, the 81 objects bikbjl can be arranged in a 9× 9-matrix.
The bik and bjl are the same direction cosines as used in equation D.3.
The 9 × 9-matrices form a 9-dimensional representation of the rotation
group R3.
An example of a cartesian tensor field of rank 2 is given by the following
functions fij (the arguments (x, y, z) are omitted):

f1 = f11 = x2 f2 = f12 = xy f3 = f13 = xz
f4 = f21 = yx f5 = f22 = y2 f6 = f23 = yz
f7 = f31 = zx f8 = f32 = zy f9 = f33 = z2

(D.10)

If the product between x and y is commutative, then f12 = f21 etc.
A physical example of a cartesian tensor field of rank 2 is the susceptibility
tensor field χ. For every point in space (the space is thought to be filled
with a given material), χij gives the polarization in the i-direction induced
by an electric field in the j-direction. A susceptibility tensor is used in the
following equation (which can be written for every point in space), where
also the electric field and the polarization vector appear (both are vectors
of two different tensor fields of rank 1, evaluated at the same point in
space): ⎡

⎣Px

Py

Pz

⎤
⎦ = ε0

⎡
⎣χxx χxy χxz

χyx χyy χyz

χzx χzy χzz

⎤
⎦
⎡
⎣Ex

Ey

Ez

⎤
⎦ (D.11)

Note from this example that multiplication between tensors of different
rank is possible. We knew this already for the familiar case of the multi-
plication of a vector by a scalar.

– Tensor field of rank n
The above definitions can be generalized to define (cartesian) tensor fields
of rank n. There will be needed 3n functions fi. Tensors of rank n can be
arranged in a 3n × 1-matrix, and in the required transformation property
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a 3n × 3n-matrix containing products between n direction cosines will
appear. The latter matrices form a n-dimensional representation of the
rotation group R3.

D.2 Reducing cartesian tensors

Without going too deep into the mathematical meaning of the word, a tensor
field of rank n defined by a set of functions fi can be equivalent4 to another
tensor field of the same rank defined by a set of functions gi. Two equivalent
tensor fields have the same basic mathematical properties and only appar-
ently look different. Also the n2 ×n2-matrices in the equation describing the
transformation properties will look different between two equivalent tensor
fields. In fact, it can be proven that for any tensor field F it is always possible
to find an equivalent tensor field G such that their transformation matrices
relate in the following way:

⎡
⎢⎢⎢⎣

�� �� · · · ��
�� �� · · · ��
...

...
. . .

...
�� �� · · · ��

⎤
⎥⎥⎥⎦⇐⇒

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

�� · · · ��
...

. . .
...

�� · · · ��

0

0

�� · · · ��
...

. . .
...

�� · · · ��

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(D.12)

The matrix on the right hand side in the above equation is said to be in block
form. The tensor field F is said to have been reduced into the tensor field
G. Equation D.12 tells nothing about the size of the different subblocks. It
can happen that the size of the smallest block equals the size of the complete
matrix. Then the tensor field is irreducible and their transformation matrices
form an irreducible representation of the rotation group R3.

Cartesian tensor fields of rank 2 are reducible. Their 9×9 transformation
matrices can be proven to have a block form consisting out of a 5 × 5-block,
a 3 × 3-block and a 1 × 1-block. If a tensor field of rank 2 is described by
the functions gi yielding the block form, then under a rotation of XYZ the
first 5 components of a new tensor are linear combinations of the first 5
components of an old tensor. The same happens for components number 6 to
8, while component number 9 remains unchanged. To put it in other words:
the transformation leaves a 5-dimensional, 3-dimensional and 1-dimensional
subspace invariant.

4 In mathematical language this means the tensor field defined by fi can be trans-
formed by a unitary transformation into the tensor field defined by gi.
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D.3 Spherical tensors in 3-dimensional space

We now leave the cartesian tensor fields for a while and define spherical tensor
fields. For a spherical tensor field of rank n we need only 2n + 1 defining
functions fi. Every point in space – now preferably described by spherical
coordinates (r, θ, φ) – is associated to an object with 2n + 1 components:

(r, θ, φ) �→

⎧⎪⎪⎨
⎪⎪⎩

f1(r, θ, φ)
f2(r, θ, φ)
. . .
f2n+1(r, θ, φ)

⇐⇒

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

fn
n (r, θ, φ)

fn
n−1(r, θ, φ)

. . .
fn

q (r, θ, φ)
. . .
fn
−n(r, θ, φ)

⇐⇒

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

an
n

an
n−1

. . .
an

q

. . .
an
−n

(D.13)

Not every such an object is a spherical tensor. The defining property is that
it should behave in the following way under a rotation of XYZ:[

fn
n (r ′, θ ′, φ ′) fn

n−1(r
′, θ ′, φ ′) · · · fn

−n+1(r
′, θ ′, φ ′) fn

−n(r ′, θ ′, φ ′)
]

=[
fn

n (r, θ, φ) fn
n−1(r, θ, φ) · · · fn

−n+1(r, θ, φ) fn
−n(r, θ, φ)

] ·⎡
⎢⎢⎢⎢⎣

. . . . . . . . .

. . . . . . . . .

. . . Dn
q ′q(α, β, γ) . . .

. . . . . . . . .

. . . . . . . . .

⎤
⎥⎥⎥⎥⎦ (D.14)

or

fn
q (r′, θ′, φ′) =

n∑
q′=−n

Dn
q′q(α, β, γ) fn

q′(r, θ, φ) (D.15)

Here we follow the usual convention that the components of spherical tensors
are given as 1 × (2n + 1) row-matrices (and not as column matrices). The
angles α, β and γ are the Euler angles which specify the orientation of the
new axis system with respect to the old one (see Appendix F for the exact
definition used in this book). The Dn

q ′q(α, β, γ) are matrix elements of the
Wigner rotation matrix Dn of order 2n + 1, which is a (2n + 1)-dimensional
irreducible representation of the rotation group R3. Symmetry properties and
explicit expressions for these matrix elements are given in Appendix H.

As for cartesian tensor fields, one has here scalar fields (rank 0), vector
fields (rank 1) and tensor fields (rank ≥ 2). Note that from rank 2 on, a
spherical tensor field has less components than a cartesian tensor field of the
same rank. Moreover, spherical tensor fields can also be defined for n being
an integer multiple of 1/2. An example of a spherical tensor field of rank n
(integer) is the following one:

an
q = fn

q (r, θ, φ) =

√
4π

2n + 1
rn Y q

n (θ, φ) (D.16)



210 D Tensors and tensor fields

The Y n
q are the spherical harmonics defined in appendix G. We will use this

for physics important tensor field as an example on the following pages5.
The special property which makes spherical tensors interesting, is their irre-
ducibility.

D.4 Cartesian form of spherical tensor fields

Because of their irreducibility, the 5, 3 and 1 components of a cartesian tensor
field are equivalent to a spherical tensor field of rank 2 (5 components), rank
1 (3 components) and rank 0 (1 component), which make 9 components in
total. It is easier to describe a physical property by these 3 spherical tensor
fields than by the single cartesian one, because of the lower dimensionali-
ties involved and because of the easy transformation properties by Wigner
matrices.

In this course we work a lot with spherical tensor fields, especially of
rank 2. Sometimes we will express them by means of spherical harmonics
(equation D.16) and sometimes by their ‘cartesian form’. The latter is an
explicit expression for a spherical tensor field in a cartesian axis system, and
must not be confused with a cartesian tensor field. The relation between the
2n+1 spherical components an

q and the 2n+1 components ai of the cartesian
form are:

– Scalar field (rank 0):

a1 = a0
0 (D.17)

For the example of equation D.16 (n=0), a0
0 = 1, and hence a1 = 1.

– Vector field (rank 1):
Being given a spherical tensor field of rank 1, the corresponding 3 com-
ponents of its cartesian form are found by:

a1 =

√
2

2

(
a1
−1 − a1

+1

)
a2 =

√
2

2
i
(
a1
−1 + a1

+1

)
(D.18)

a3 = a1
0

Check that for the example given in equation D.16, the cartesian compo-
nents (a1, a2, a3) are (x, y, z) : for rank 1, this example is the position
field we defined earlier. The inverse relations are given by:

a1
−1 =

1√
2

(a1 − ia2)

5 See also Sec. 2.1, equation 2.6 for the use of this tensor field in physics.
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a1
+1 = − 1√

2
(a1 + ia2) (D.19)

a1
0 = a3

– Tensor field of rank 2:
For spherical scalar and vector fields, the cartesian form has as many
components as the spherical form. For the cartesian form of a spherical
tensor field of rank 2 the cartesian form will have 9 components in stead
of the expected 5, but relations between these components will reduce the
number of free choices again to 5. Indeed, the cartesian form of a tensor
field of rank 2 is given by traceless6 symmetric matrices. The cartesian
form then looks like:

A =

⎡
⎣a11 a12 a13

a12 a22 a23

a13 a23 a33

⎤
⎦ with Tr(A) = a11 + a22 + a33 = 0 (D.20)

Being given a spherical tensor field of rank 2, the corresponding 6 com-
ponents of its cartesian form (only 5 of them are independent) are found
by:

a11 =

√
6

2

(
a2
2 + a2

−2

)− a2
0

a22 = −
√

6

2

(
a2
2 + a2

−2

)− a2
0

a33 = 2a2
0 (D.21)

a12 = −
√

6

2
i
(
a2
2 − a2

−2

)
a13 = −

√
6

2

(
a2
1 − a2

−1

)
a23 =

√
6

2
i
(
a2
1 + a2

−1

)
(D.22)

Verify that with the example of equation D.16 you find in this way the
quadrupole tensor Q, with Qij = 3xixj − r2δij :

Q =

⎡
⎣ 3x2 − r2 3xy 3xz

3xy 3y2 − r2 3yz
3xz 3yz 3z2 − r2

⎤
⎦ (D.23)

The inverse relations are:

a2
0 =

1

2
a33

6 The trace of a rectangular matrix is the sum of its diagonal elements. A traceless
matrix has zero trace.
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a2
±1 = ∓ 1√

6
(a13 ± ia23) (D.24)

a2
±2 =

1

2
√

6
(a11 − a22 ± 2ia12)

There is a close relationship between the reduction of a cartesian tensor (3×3-
matrix) and matrix algebra. It can be proven that any 3 × 3-matrix can be
written as the sum of i) a traceless symmetric matrix, ii) an antisymmetric
matrix (which is automatically traceless) and iii) a multiple of the unity
matrix with the trace of the original matrix. These 3 matrices have 5, 3 and
1 degrees of freedom respectively and can be considered to be cartesian forms
of spherical tensors of rank 2, 1 and 0 (for rank 2 this is indeed the cartesian
form we introduced above, for rank 1 and rank 0 we used simpler cartesian
forms).

D.5 The dot product

The dot product between two cartesian tensors of rank n A and B is defined
as:

A · B = a1b1 + a2b2 + . . . + a3nb3n (D.25)

For rank 1 this is the familiar dot product between vectors. The dot product
is a scalar quantity: it does not change upon a rotation of XYZ. The dot
product between two spherical tensors of rank n An and Bn is defined as:

An · Bn =
n∑

q=−n

An∗
q Bn

q (D.26)

For the tensors we will encounter in this course, this is equivalent to:

An · Bn =
n∑

q=−n

(−1)qAn
−q Bn

q (D.27)

Verify by equation D.19 that both definitions make sense.

If a spherical tensor of rank 2 is given by its cartesian form, then it can
be proven that the dot product between two such tensors equals:⎡

⎣a11 a12 a13

a12 a22 a23

a13 a23 a33

⎤
⎦ ·
⎡
⎣ b11 b12 b13

b12 b22 b23

b13 b23 b33

⎤
⎦ = a11b11 + a12b12 + . . . + a33b33 (D.28)

Do not confuse this notation with a matrix product!
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D.6 Principal axis system

When considering a spherical tensor of any rank, corresponding to a particu-
lar point in the three-dimensional space7, one can ask whether an axis system
X’Y’Z’ exists in which this tensor is expressed easier – this means: with as
many components as possible being zero – then in any other system. Such an
axis system is called a principal axis system (PAS) for that tensor.
For a scalar this question is irrelevant. For a vector, many principal axis sys-
tems exist. This can easily be visualized for a position field: as long as one
of the axes is parallel to a particular position vector, only the component
along that axis is non-zero in the cartesian form. As a practical convention,
the Z-axis is chosen parallel to the vector (X- and Y-axes do not matter). A
vector A with length A has in its PAS the following cartesian and spherical
components:

ax = 0 a1
0 = A

ay = 0 a1
1 = 0

az = A a1
−1 = 0

(D.29)

A principal axis system for a spherical tensor of rank 2 is an axis system
in which the 3 × 3-matrix of the cartesian form of this tensor is diagonal
(for symmetric matrices this is always possible). Once XYZ is rotated such
that the matrix is diagonal, the axes are renamed by convention such that
|azz| ≥ |ayy| ≥ |axx|. The cartesian form in the PAS is now:⎡

⎣axx 0 0
0 ayy 0
0 0 azz

⎤
⎦ (D.30)

The trace of matrix is invariant upon rotation of the axis system and therefore
remains zero. It means we have only 2 degrees of freedom in D.30. Because
there are also 3 degrees of freedom needed to specify the PAS with respect
to the original XYZ (e.g. 3 Euler angles), we retain the 5 degrees of freedom
expected for a spherical tensor of rank 2. From D.24 we see that the spherical
components in the PAS are:

a2
0 =

1

2
azz

a2
±1 = 0 (D.31)

a2
±2 =

1

2
√

6
(axx − ayy)

Because a2
+2 = a2

−2 also in the spherical components only 2 apparent degrees
of freedom are left. Again because of the 3 degrees of freedom needed to
specify the PAS, we find back the 5 degrees of freedom which are needed.

7 A PAS will be a property of a particular tensor, not of the entire tensor field.
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D.7 Summarizing exercise

To check your ability to work with coordinate transformations, spherical ten-
sors and Wigner rotation matrices, you might verify – by using spherical
tensors – the statement which is proven in Appendix F by Cartesian argu-
ments:

Take the (cartesian) vector (1, 0, 0) in an ‘old’ axis system. Now consider
a ‘new’ axis system, which is defined by the Euler angles (90◦, 90◦, 90◦) with
respect to the old one. From Appendix F, you know that the coordinates of
this vector in the new axis system are (−1, 0, 0). Show that this is true by
the following chain of arguments:

– Transform the original vector into a spherical tensor of rank 1 (equa-
tion D.19).

– Write the explicit Wigner rotation matrix for this case (Appendix H).
– Transform the spherical tensor into the new axis system (equation D.14).
– Transform the resulting spherical tensor back into a cartesian vector

(equation D.18).

If all the formulae in this book are consistent with each other8 and if you
didn’t make mistakes, you should find (−1, 0, 0) in the end.

8 Which is a never-ending source of sleepless nights for the authors of this text. . .


