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Abstract

This document is meant for optional background reading when study-
ing www.hyperfinecourse.org. It deals with one of the chapters of this
course. The formal course content is defined by the website and videos.
The present document does not belong to the formal course content. It
covers the same topics, but usually with more mathematical background,
more physical background and more examples. Feel free to use it, as long
as it helps you mastering the course content in the videos. If you prefer
studying from the videos only, this is perfectly fine.

The present text has been prepared by Jeffrey De Rycke (student in
this course in the year 2018-2019). He started from a partial syllabus
written by Stefaan Cottenier for an earlier version of this course, and
cleaned, edited and elaborated upon that material. That syllabus was
itself inspired by a course taught by Michel Rots at KU Leuven (roughly
1990-1995).
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1 Monopole Shift

1.1 Interaction Energy Nucleus And Electrons

In the previous chapter, we have seen that we can Taylor-expand the interaction
term between the nucleons and the electrons as follows:

QaV = QUeV® + QWev® + QP eV® + . (1)

With the following expressions:
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Where we made the agreement to treat all nuclear properties as phenomenolog-
ical parameters, whilst keeping the electronic properties as operators. As well
as keeping r.>r,. Suppose we now want to calculate the first term for a nucleus
with one electron. We will get the following expressions:

Qoo = \/\/g pn(F)dF = eZ (4)
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As you can see, these are just the non-relativistic energy levels of a point charge
Ze in the potential of an electron.
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Figure 1: Systematic overview of nuclear multipole and quasi-
multipole-moments and electric multipole and quasi-multipole-
fields that appear in the multipole expansion of two interacting
(and overlapping) classical charge distributions. The first col-
umn gives the reqular multipole expansion for point nuclei: the
monopole, quadrupole, and hexadecapole interactions. The next
columns give the quasi-multipole-moments/fields for every multi-
pole interaction, denoted by a tilde: these are corrections to the
multipole interactions due to electron penetration into an extended
nucleus. Entries in the large round brackets are by generalization
only, and are not systematically derived in this course. The ob-
jects in each line are spherical tensors of a given rank (rank 0 for
line 1, rank 2 for line 2, and rank 4 for line 3).

A nucleus is, however, not a point charge. Further multipole moments can be
calculated to further correct the energy levels due to the shape of the nucleus.
In case of charge-charge interactions, these can be found via the quadrupole
moment, the hexadecapole moment,... Not only does the shape of the nucleus
amount to corrections, so does the fact that the nucleus and the electrons can
overlap. In a fully exact description of the multipole expansion with overlapping
charged distributions, every individual multipole term itself becomes a series
expansion in powers of a quantity that is characteristic for the amount of overlap.
Most of the effect of overlap is usually captured already in the first non-leading
term of each of those expansions. The first order correction to the monopole
moment is called the "first order monopole-shift” and will be the topic of this
chapter. The first order correction to the quadrupole moment is called the ”first
order quadrupole shift”, and so on and so forth. Each higher order moment
having a smaller value then the previous one. The same goes for the order of
the overlap correction. The second order monopole shift will be much smaller
then the first order monopole shift.



1.2 First-order Monopole Shift Without Overlap

On the previous page, we have calculated the monopole correction due to the
interaction between the nucleus and the electrons. The full energy level up to
this correction (with N electrons) is as follows:
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E,, is just shorthand notation for some contributions that will always be the
same. In the second term we again have the (dot) product between the monopole
moment of the nucleus eZ and the monopole field at the origin due to the elec-

trons, Z:SJZ <%> (as usual, we either consider a neutral atom (N=Z) or one of
e

the nuclei of a solid, with the origin chosen at that nucleus). Note that we again
use the fact that we have no knowledge of the nuclear many-body wave function
|I)): instead of calculating the monopole moment from the nuclear many-body
wave function, we replace it by the experimentally known total charge of the
nucleus.

This shape-dependent monopole contribution of the charge-charge interaction,
is by far the largest contribution to the electrostatic energy of the system nu-
cleus + electrons It is insensitive to details of the nuclear charge distribution,
but through < - > sensitive to details of the electronic charge distribution.

Different states |z/15 > will lead to different < L > and therefore to the distinct
atomic levels with their eV-separation in the ﬁrst zoomed in part of VIP-1.

1.3 First-order Monopole Shift With Overlap

Let us now look at the monopole term, with a first order correction due to
overlap. Looking back at the gravitational result, the size-dependent monopole
contribution is:
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Using Poisson’s equation:

AVe(re) = — (12)

the energy including shape- and size-dependent monopole contributions be-
come
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Note that the size-dependent contribution is always positive. Equation [I3] can
be rewritten as:
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with Q = eZ the nuclear charge. This notation shows explicitly that both the
shape- and size-dependent monopole contributions are a product between the
nuclear charge (the nuclear monopole moment) and a potential at the nucleus.
The potential that appears in the shape-dependent contribution depends en-
tirely on properties of the electrons (it is the electronic monopole field). The
effect of the overlap between nuclear and electronic charge distributions can be
interpreted as due to an extra positive potential — % pe(ﬁ) <7",2L> at the nucleus.

This potential depends not only on the electronic property pe (6), but also on
the nuclear property <r%> The latter is not really surprising. If electrons pen-
etrate into the nucleus, they will interact differently with a nuclear charge that
is contained into a small or a large volume. This difference is expressed by the
mean square nuclear radius. In the limiting case of a point nucleus (<r%> —0),
this size-dependent correction becomes zero, as we intuitively expect. The same
is true when electrons can/do not enter the nucleus. Then this term is zero as
well.

1.4 Electrons Inside The Nucleus

We have said that the size-dependent monopole term arises from electrons pene-
trating the nucleus. The questions we now have to ask ourselves is: do electrons
penetrate the nucleus? In other words, does this term even exist in reality?
In a non-relativistic treatment, s-electrons do have a non-zero probability at
the position of the nucleus 7 = 0. This happens even if the nucleus is a single
mathematical point, as the s-electron wave function does not vanish at ¥ = 0.
In a relativistic treatment also the p1 electrons (= relativistic quantum number
k = 1, from the Dirac equation) can penetrate into the nucleus. Can we esti-
mate the size of said size-dependent term? OnlyEI s-electrons will contribute to
the overall charge density p. at 0. For a fully filled s-shell, we can therefore write

1Check that all terms have dimensions of energy.
2in the non-relativistic treatment



. 2
pe(0) = —2e |¢5(0)
Filling out values for the Be-atom (Z = 4, r, = 1.4- 107 A3 m, |1hs,(0)]2 =

i%) yields 3.5 peV. Overlap corrections to the monopole term are therefore of
0

, where 15 is a (single particle) s-electron wave function.

the order of magnitude of peV. In order to calculate numerical values for these
corrections, experimental values for <7‘3L> must be known (they cannot yet be
calculated from first principles nuclear theory). Alternatively, if energies are

measured, this equation can be used to determine <r,21>
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Figure 2: Difference between radial part of the wave function for
2s and 2p electrons of the H-atom. One can cleary see that the 2s
electrons have a change >0 to be at the origin.

1.5 Isotope and Isomer Shift

The correction to the monopole energy due to the penetration of electrons into
the nucleus does not lift any degeneracy, but only shifts the levels by a positive
amount which depends on the amount of penetration and the mean square
radius of the nucleus. The nuclei of different isotopes of the same element can
be expected to have different nuclear radii, and hence different corrections. This
effect is well-known in atomic spectroscopy as one of the contributions to the
isotope shift, namely the field shift. There is another contribution to this isotope
shift, which is due to the fact that different isotopes can have different masses:
the mass shift. The observed isotope shift (in Fig. 2 on the next page) is the
sum of field shift and mass shift. Two states (isomers, excited nuclei) of the
same nucleus can have different radii a well, this is called the isomer shift. To
be clear, this is not illustrated in Fig. 2.
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Figure 3: Calculated mass shifts in free Li ions. All energies are
relative to the completely ionized limit. Energies are expressed
in em™1 (multiply by 0.5809 to get values in peV). For instance,
the 38y configuration (1s' 2s' with the two spins parallel) in in-
finitely heavy Li* has an energy which is 87.73 cm™! (50.96 peV)
lower than the same configuration in "Lit, and 102.84 cm™!
(59.44 peV) lower than in SLit. Comparisons with an infinitely
heavy ion cannot be checked experimentally, but the difference of
14.61 em™Y (8.48 peV) between the Sy configurations of "Lit
and S LiT is present in experiments. Similar interpretations can be
made for the 251/2 configuration, while the Py configuration con-
tains complications not discussed in this text. (Picture taken from
Isotope Shifts in Atomic Spectra, W. H. King, Plenum Press,
1984.)



1.6 Second Order Monopole Shift

We have just discussed the first order monopole shift, but what about the second
order monopole shift? This correction is, as previously stated, much smaller
then the first order shift (4'" power of nuclear radius instead of 2"?). Tt will
nonetheless pop up when dealing with so called "muonic atoms”. These are
atoms where one of the electrons is replaced by a muon, which is about 207
times heavier than the electron. Therefore it will circle much closer to the
nucleus and have a larger overlap with said nucleus.

2 A Toy Model For The Monopole Shift

The writer of this document didn’t think there was more background to add in
addition to the course video about this topic. Writing about what is discussed
in the video would be a literal translation from video to text, and this is not the
purpose of these documents. For additional background on this video, please
read https://biblio.ugent.be/publication/2988716 /file/2988720.pdf. This is the
paper from where said toy model originates and is writen by K. Rose and S. Cot-
tenier (the lecturer of this course). The paper is free to download for everybody
with a UGent account.


https://biblio.ugent.be/publication/2988716/file/2988720.pdf
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