magnetic hyperfine interaction in free atoms

www. hyperfinecourse .org

magnetic hyperfine interaction in free atoms

or

coupling of angular momenta : from L-S to I-J

stefaan.cottenier@ugent.be

2

coupling of angular momenta: L-S

We'll remind first what you saw in earlier courses on the coupling of orbital and spin angular momenta in an atom:

The problem: "For a given shell (n,l), how do a given number of electrons occupy the available orbitals?"

Example: C (n=2, I=1), 2 p-electrons

There are 6 different orbitals (m₁=-1,0,+1 and this for either spin), hence 6x6=36 possibilities to put these 2 electrons. Which of those 36 possibilities has the lowest energy (and will therefore be found as the ground state in Nature)?

3

Hund's rules provide you with an algorithm to find this ground state ntal trends)

3

1

coupling of angular momenta: L-S

1st Hund's rule

Only configurations where the total S is maximal should be considered further.

S is found as the absolute value of the sum of all m_s values

Our example: only states with S=1 (twice m_S =+1/2 or twice m_S =-1/2) should be considered further.

2nd Hund's rule

Within the previous set, only configurations where the total L is maximal should be considered further

L is found as the absolute value of the sum of all $m_{\rm L}$ values

Our example: states with S=1 cannot contain 2 electrons in the same m_L orbital. Hence, the maximal L is L=1 (two electrons in m_L =+1,0, or in m_L =-1,0)

4

7

coupling of angular momenta: I-J

A nucleus with spin I has 2I+1 possible orientations. An electron cloud with total angular momentum J has 2J+1 possible orientations.

If there is no interaction between I and J, all these (2I+1)x(2J+1) possibilities have the same energy.

I is related to the nuclear magnetic moment (dipole moment for the current-current case) Each J state provides a specific magnetic hyperfine field current-current case)

→ I and J do interact
→ which mutual orientation of I and J corresponds to the lowest energy?

We will discuss this in terms of a new total angular momentum F:

$$F = I + J, I + J - 1, \dots, |I - J|$$

Each value of F corresponds to a different mutual orientation of I and J. For a given F, different values of m_F correspond to a rotation of the atom as a whole (mutual orientation is unaffected).

9

coupling of angular momenta: I-J	
Apply perturbation theory	
The states of the unperturbed system are the $ F>$ (direct product of $ I>$ and $ $	J>)
The perturbing hamiltonian is likely to lift degeneracies → perturbation theory for the degenrate case	
Fortunately the F> states are orthonormal already (property of angular momentum eigenstates)	
$ \begin{bmatrix} \langle 0 \hat{H}_{jj} 0 \rangle \ \langle 1 \hat{H}_{jj} 0 \rangle \ \langle 2 \hat{H}_{jj} 0 \rangle \ \langle 3 \hat{H}_{jj} 0 \rangle \\ \langle 0 \hat{H}_{jj} 1 \rangle \ \langle 1 \hat{H}_{jj} 1 \rangle \ \langle 2 \hat{H}_{jj} 1 \rangle \ \langle 3 \hat{H}_{jj} 1 \rangle \\ \langle 0 \hat{H}_{jj} 2 \rangle \ \langle 1 \hat{H}_{jj} 2 \rangle \ \langle 2 \hat{H}_{jj} 2 \rangle \ \langle 3 \hat{H}_{jj} 2 \rangle \\ \langle 0 \hat{H}_{jj} 3 \rangle \ \langle 1 \hat{H}_{jj} 3 \rangle \ \langle 2 \hat{H}_{jj} 3 \rangle \ \langle 3 \hat{H}_{jj} 3 \rangle \end{bmatrix} $	
	11

11

8

10

9

12

14

13