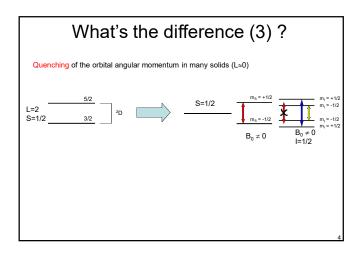
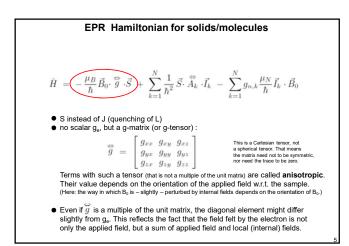
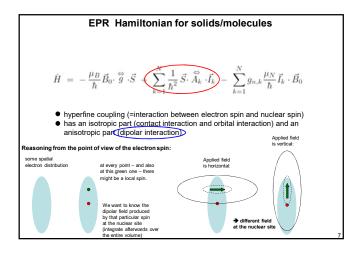

Electron Paramagnetic Resonance: molecules and solids

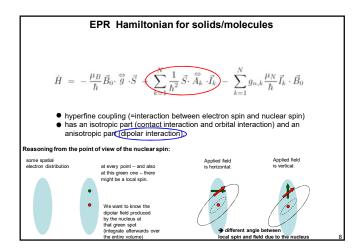
www. hyperfinecourse .org

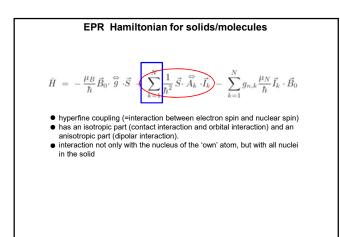


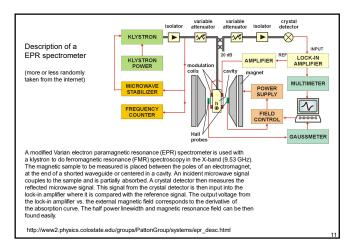
As soon as your sample is not a free atom any longer, there is **anisotropy**: the orientation of the applied field w.r.t. the molecule or solid matters.

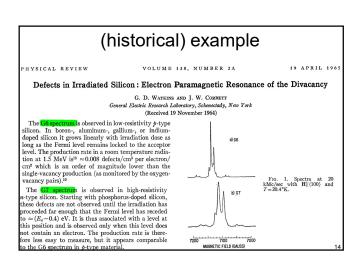

What's the difference (2)?

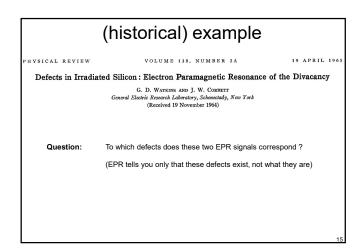

The moment of the considered atom does not only interact with the external field and with the field due to its own nucleus, but also with the fields due to other nuclei and due to electrons around those other nuclei (fades out with distance).

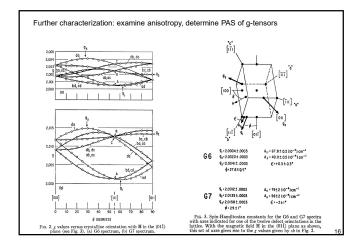




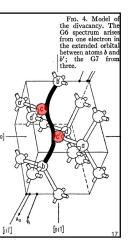



EPR Hamiltonian for solids/molecules
$$\hat{H} = -\frac{\mu_B}{\hbar}\vec{B}_0 \cdot \vec{g} \cdot \vec{S} + \sum_{k=1}^{N} \frac{1}{\hbar^2} \vec{S} \cdot \vec{A}_k \cdot \vec{I}_k \quad \underbrace{\sum_{k=1}^{N} g_{n,k} \frac{\mu_N}{\hbar} \vec{I}_k \cdot \vec{B}_0}_{k=1}$$
• interaction between the nuclear spins and the external field
• to a good approximation isotropic

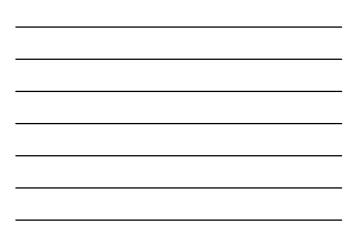




(historical) example				
PHYSICAL REVIEW	VOLUME 138, NUMBER 2A	19 APRIL 1965		
Defects in Irradiated Silicon: Electron Paramagnetic Resonance of the Divacancy				
	G. D. WATKINS AND J. W. CORBETT General Electric Research Laboratory, Schenetady, New York (Received 19 November 1964)			
Context:	Irradiate (doped) Si with high-energy electrons, in order to create defects. Some of these defects have unpaired electrons (=S), and therefore produce a signal in EPR experiments.			
		13		



Conclusion/interpretation (based on a list of indirect evidence) :


VI. SUMMARY AND CONCLUSIONS

We conclude that the divacancy introduces a single

We conclude that the divacancy introduces a single donor and two acceptor levels into the forbidden gap and can therefore exist in four different charge states. We identify two epr spectra, G6 and G7, as arising from the singly positive and the singly negative charge states of the divacancy, respectively. The model of the divacancy deduced from the studies in this paper is one in which the two vacancies are at adjacent atom sites. Four of the six silicon atoms adjacent to the divacancy bond together by pairs and the remaining electrons are spread over the other two atoms, which are separated from each other across the divacancy. For the G6 spectrum there is one elec-tron shared between these two atoms, for the G7, there are three. This pulling together of the other atom pairs can be viewed as a manifestation of the Jahn-Teller effect.

Volume 88, Number 8	PHYSICAL REV	VIEW LETTERS	25 February 200
First-Principl	es Theory of the EPR a	g Tensor in Solids: Defe	ects in Quartz
TCM Group, Co		. Pickard y Road, Cambridge, CB3 OHE, U	Inited Kingdom
Laboratoire	de Minéralogie-Cristallographi 4 Place Jussieu, 75252	co Mauri e de Paris, Université Pierre et l , Paris, Cedex 05, France ; published 11 February 2002)	Marie Curie,
It is based on densit to the calculation of quantum chemical a prediction of EPR a	y functional theory and on the all-electron magnetic response. nd experimental data for a sele	tensor for paramagnetic defects ir gauge including projector augmet The method is validated by comp ction of diatomic radicals. We th 4 find the results to be in excell to defect centers in quartz.	nted wave approach arison with existing en perform the first
DOI: 10.1103/PhysRe	vI ett 88 086403	PACS numbers: 71.15n	a 6172 Bb 7630 -v

