www.hyperfinecourse.org

guadrupole interaction :
case studies & symmetry

ww. Nyperfinecourse .o

Analytical examples

Simplest case: I=1  (1=0 and =1/2 have Q=0)
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Analytical examples
Simplest case: I=1  (1=0 and I=1/2 have Q=0)
After diagonalization
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Analytical examples

Simplest case: I=1  (1=0 and I=1/2 have Q=0)

_—> the nucleus has its spin axis in the xy-plane

| > the nucleus has its spin axis parallel to the z-axis

Graphical:
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n=0 0 1n#0 1 4

Analytical examples

Qualitatively similar to what we found for the toy problem:

Simplest case: I=1  (1=0 and =1/2 have Q=0)

(V,, was negative there, Q was positive. The picture
hereunder renders m=0 with the highest energy if
Vzz is negative. The 1:2 ratio for the classical case
turns into a 2:1 ratio for the quantum case — not sure

Graphical: OV, whether or not this has a deep meaning...)
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Return to the VIP:
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Analytical examples
Next simple case: 1=3/2  (1=0 and I=1/2 have Q=0)
Non-zero matrix elements :
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Analytical examples
Next simple case: 1=3/2  (1=0 and I=1/2 have Q=0)
After diagonalization
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General statements

« integer spin
*n=0
= +m degeneracy
*nz0
= +m degeneracy lifted in first order for m=1 (proof p. 107-109)
= +m degeneracy lifted in higher orders for m>1

« half-integer spin
*1=0
= +m degeneracy
=0
= +m degeneracy not lifted

o Graphical illustration: fig. 6.2 (p. 109)
o Proof for distinction between integer and half-integer spin: p. 112-114

General statements

1=7/2 B2 1=9/2

(sorry for this low-quality picture — it has an emotional justification)

Experimental consequences

The energy differences AE can be measured — see nuclear methods
discussed in later lectures.

« if Qis known from nuclear physics: measuring AE gives access to V,,
« if V, is known from ab initio calculations: measuring AE gives access to Q

eQV.

+1 — AE,

AE,
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Symmetry properties of the EFG tensor

EFG tensor = 5 numbers, depending on the choice of axis system

Theorem 1

« a 2-fold rotation axis can be chosen as z-axis of PAS

« a 3-fold (or more) rotation axis is z-axis of PAS and n=0.
Proof : p. 116

Theorem 2
« If there are two or more 3-fold (or more) rotation axes, then the EFG tensor is zero.
Proof : p. 117

In solids, the situation of this second theorem appears only in 5 point groups,
which are all cubic (23, -43m, m-3, 432 and m-3m).

Symmetry properties of the EFG tensor

Examples:

2 Fe-sites in Fe,N

Reconsider the 2 gravitational examples:

.L why the EFG is i ) axially i
« discuss the situation where the EFG due to the double ring
bet-In is zero: can the 2 theorem be inverted?
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