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quadrupole interaction :
case studies & symmetry
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Analytical examples Analytical examples
Simplest case: I=1  (1=0 and I=1/2 have Q=0) Simplest case: I=1  (1=0 and I=1/2 have Q=0)
After diagonalization e —> the nucleus has its spin axis in the xy-plane
0 L 1 0 n 0 —> the nucleus has its spin axis parallel to the z-axis
0 0 2
Graphical: Lo Graphical:
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Analytical examples Return to the VIP:

Qualitatively similar to what we found for the toy problem:

Simplest case: I=1  (1=0 and I=1/2 have Q=0)

(V,, was negative there, Q was positive. The picture
hereunder renders m=0 with the highest energy if
Vzz is negative. The 1:2 ratio for the classical case N
. turns into a 2:1 ratio for the quantum case — not sure I
Graphical: whether or not this has a deep meaning...) 2
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Return to the VIP:

(electronic ground state)
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Analytical examples

Next simple case: I=3/2 (=0 and I=1/2 have Q=0)

Non-zero matrix elements :

1 1 , QY

Matrix for 1st order perturbation :

not ordered ordered
+3/2 +1/2 -1/2 -3/2 +3/2 -1/2 -3/2 +1/2
3 0 V3g © 3 V3p 0 0
Eo = eQ Ve 0 30 Ag||p12 kg = eQVe: | Vg 0 0
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Analytical examples General statements
Next simple case: 1=3/2  (1=0and I=1/2 have Q=0) « integer spin
*1=0
After diagonalization = +m degeneracy
3 0 0 0 *n=0
wov. —=| 0o 3 0 o = +m degeneracy lifted in first order for m=1 (proof p. 107-109)
g = 0 14 7-7; 0 0 3 o = +m degeneracy lifted in higher orders for m>1
: 0 [1] 0 3
. * half-integer spin
Graphical: ov. <=0
: m=+3/2 = +m degeneracy
=0
= +m degeneracy not lifted
o Graphical illustration: fig. 6.2 (p. 109)
o Proof for distinction between integer and half-integer spin: p. 112-114
m=+1/2
n=0 n=0 1 9 10
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General statements Experimental consequences
- _ g e ._ 3 The energy differences AE can be measured — see nuclear methods
=712 q =512 12972 discussed in later lectures.
Ul o « if Q is known from nuclear physics: measuring AE gives access to V,,
« if V,, is known from ab initio calculations: measuring AE gives access to Q
Q..
- . -I— - _— - i 1
5 ’ = =4 +2]
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wle ' “ m=+1
1™ " AE,
<Z | o _ 1=1 .
Fig. 8.2. @ \1\ AE,
7 QY. 12 - 1 2 m=0
n=0 0 =0 1
(sorry for this low-quality picture — it has an emotional justification) " 12
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Symmetry properties of the EFG tensor

EFG tensor = 5 numbers, depending on the choice of axis system
Theorem 1

« a 2-fold rotation axis can be chosen as z-axis of PAS

« a 3-fold (or more) rotation axis is z-axis of PAS and n=0.
Proof : p. 116
Theorem 2

Proof : p. 117

In solids, the situation of this second theorem appears only in 5 point groups,
which are all cubic (23, -43m, m-3, 432 and m-3m).

« If there are two or more 3-fold (or more) rotation axes, then the EFG tensor is zero.

Examples:

Symmetry properties of the EFG tensor

2 Fe-sites in Fe,N

Reconsider the 2 gravitational examples:

« understand why the EFG is (sometimes) axially symmetric
« discuss the situation where the EFG due to the double ring
bet-In is zero: can the 2" theorem be inverted?
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