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Analytical examples

Simplest case: I=1    (I=0 and I=1/2 have Q0)
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Analytical examples

Simplest case: I=1    (I=0 and I=1/2 have Q0)

After diagonalization
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Analytical examples

Simplest case: I=1    (I=0 and I=1/2 have Q0)

Graphical:
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the nucleus has its spin axis in the xy-plane

the nucleus has its spin axis parallel to the z-axis

up and down matter (=the EFG distinguishes between +z and -z)
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Analytical examples

Simplest case: I=1    (I=0 and I=1/2 have Q0)

Graphical:
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Qualitatively similar to what we found for the toy problem:

(Vzz was negative there, Q was positive. The picture 
hereunder renders m=0 with the highest energy if
Vzz is negative. The 1:2 ratio for the classical case
turns into a 2:1 ratio for the quantum case – not sure
whether or not this has a deep meaning...)
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Return to the VIP:
(electronic ground state)
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Analytical examples

Next simple case: I=3/2    (I=0 and I=1/2 have Q0)

Non-zero matrix elements :

Matrix for 1st order perturbation :

not ordered ordered
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Analytical examples

Next simple case: I=3/2    (I=0 and I=1/2 have Q0)

After diagonalization

Graphical:
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General statements

• integer spin
• =0

 m degeneracy
• 0

 m degeneracy lifted in first order for m=1 (proof p. 107-109)

 m degeneracy lifted in higher orders for m>1

• half-integer spin
• =0

 m degeneracy
• 0

 m degeneracy not lifted 

o Graphical illustration: fig. 6.2 (p. 109)
o Proof for distinction between integer and half-integer spin: p. 112-114
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General statements

(sorry for this low-quality picture – it has an emotional justification)

I=7/2 I=5/2 I=9/2

I=2 I=3 I=4
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Experimental consequences
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The energy differences E can be measured – see nuclear methods 
discussed in later lectures.

• if Q is known from nuclear physics: measuring E gives access to Vzz

• if Vzz is known from ab initio calculations: measuring E gives access to Q
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Symmetry properties of the EFG tensor

EFG tensor = 5 numbers, depending on the choice of axis system

Theorem 1
• a 2-fold rotation axis can be chosen as z-axis of PAS
• a 3-fold (or more) rotation axis is z-axis of PAS and =0.

Proof : p. 116

Theorem 2
• If there are two or more 3-fold (or more) rotation axes, then the EFG tensor is zero.

Proof : p. 117

In solids, the situation of this second theorem appears only in 5 point groups,
which are all cubic (23, -43m, m-3, 432 and m-3m).
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Symmetry properties of the EFG tensor

Examples:

bct-In

2 Fe-sites in Fe4N

Reconsider the 2 gravitational examples:
• understand why the EFG is (sometimes) axially symmetric
• discuss the situation where the EFG due to the double ring

is zero: can the 2nd theorem be inverted?
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