

1

Quadrupole interaction

Apply first order perturbation:

$$
E_{q q}=-\left\langle\psi_{e}^{(0)} \otimes I\right| \frac{e^{2} N Z}{5 \epsilon_{0}}\left(\frac{1}{r_{e}^{3}} Y^{2}\left(\theta_{e}, \phi_{e}\right)\right) \cdot\left(r_{n}^{2} Y^{2}\left(\theta_{n}, \phi_{n}\right)\right)\left|I \otimes \psi_{e}^{(0)}\right\rangle
$$

Can be separated because we do not consider charge-charge overlap

Quadrupole interaction

Apply first order perturbation:

$$
E_{q q}=-\left\langle\psi_{e}^{(0)} \otimes I\right| \frac{e^{2} N Z}{5 \epsilon_{0}}\left(\frac{1}{r_{e}^{3}} Y^{2}\left(\theta_{e}, \phi_{e}\right)\right) \cdot\left(r_{n}^{2} Y^{2}\left(\theta_{n}, \phi_{n}\right)\right)\left|I \otimes \psi_{e}^{(0)}\right\rangle
$$

Can be separated because we do not consider charge-charge overlap:

$$
E_{\psi}^{(2)}=\langle I|, \underbrace{Q_{i h}^{(2)}}|I\rangle \cdot\left\langle v_{e}^{(0)}\right|, \hat{V}_{t h}^{(2)}\left|v_{e}^{(0)}\right\rangle \begin{aligned}
& \text { (short-hand for the matrix of the degenerate case of } \\
& \text { first order perturbation theory, with for every matrix } \\
& \text { element a sum of } 5 \text { terms) }
\end{aligned}
$$

- electric quadrupole moment operator of the nucleus
- tensor of rank $2 \rightarrow 5$ operators
- nuclear theory cannot provide its eigenvalues ab initio
\rightarrow a clever trick and experimental info are needed
determine experimentally the single number Q
(for now assume this can be done)
(for now assume this can be done)
we know the eigenvalues (p. 99-101)
o note that we applied the same strategy for the
nuclear magnetic moment operator

Quadrupole interaction

Apply first order perturbation:

$$
E_{q q}=-\left\langle\psi_{e}^{(0)} \otimes I\right| \frac{e^{2} N Z}{5 \epsilon_{0}}\left(\frac{1}{r_{e}^{3}} Y^{2}\left(\theta_{e}, \phi_{e}\right)\right) \cdot\left(r_{n}^{2} Y^{2}\left(\theta_{n}, \phi_{n}\right)\right)\left|I \otimes \psi_{e}^{(0)}\right\rangle
$$

Can be separated because we do not consider charge-charge overlap:

$$
E_{q}^{(2)}=\langle I|, \underbrace{\left\langle Q_{s h}^{(2)} \mid I\right\rangle} \cdot\left\langle v_{e}^{(0)}\right|, \hat{V}_{s h}^{(2)}\left|v_{c}^{(0)}\right\rangle \begin{aligned}
& \begin{array}{l}
\text { short-hand for the matrix of the degenerate case of } \\
\text { first order perturbation theory, with for every matrix } \\
\text { element a sum of } 5 \text { terms })
\end{array}
\end{aligned}
$$

- electric quadrupole moment operator of the nucleus
- tensor of rank $2 \rightarrow 5$ operators
- nuclear theory cannot provide its eigenvalues ab initio
\rightarrow a clever trick and experimental info are needed
o determine experimentaly the single number Q
(for now assume this can be done)
write the Q -operators in terms of
we know the eigenvalues (p. 99-101)
o note that we applied the same strategy for the
nuclear magnetic moment operator
o all matrix elements needed for the degenerate case
of 1st order perturbation theory can be written:
6

Quadrupole interaction
After - inserting the " 5 " numbers for the field gradient and - transforming the 5 nuclear operators to a form with known eigenvalues, we end up with this perturbing hamiltonian: of which all matrix elements in the degenerate $\\|, \mathrm{m}>$-levels have to be evaluated (=degenerate case of 1 st order perturbation). number, known from numbers, computable by experimental nuclear physics ab initio (solid state/molecular) methods

7
examine this tensor in an axis system that is consistent with the symmetry of the nucleus ($Z / /$ dumb-bell axis $=$ direction of spin I)

$$
Q^{(2)}=2 e \ell^{2}\left[\begin{array}{ccc}
-1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & 2
\end{array}\right]
$$

$Q_{z z}$ is positive: prolate nucleus
You can consider the quadrupole moment tensor for any orientation as the result of this 'intrinsic' quadrupole moment tensor, followed by a rotation transformation on one of the previous slides: take
the intrinsic shape given by $Q_{z z}=Q$ (why are $Q_{x x}$ and $Q_{y y}$ fully determined by this?), and a rotation (given by the z-component of I in the given axis

9

8 Quadrupole interaction vs. magnetic dipole interaction
\rightarrow Look back at the chapter on the magnetic dipole interaction, and try to recognize all the steps on the previous slides in that derivation as well. Every step made for the quadrupole interaction has an exact match for the magnetic dipole interaction (but with vectors rather than with tensors of rank 2) In contrast to what we will see in the next few slides for the quadrupole interaction, the level splitting due to the magnetic interaction in solids is equidistant.

