overlap contribution (magnetic hyperfine interaction)

www. hyperfinecourse .org

order	multipole moment / field	first order quasi moment / quasi field	second order quasi moment / quasi field	
O(0)	$\begin{pmatrix} M \propto r^0 Y_{00} \\ V \propto v(0) \end{pmatrix}$ MI [a]	$M^{(1)} \propto \{r^2 Y_{00}\}$ $\tilde{V}^{(1)} \propto \Delta v(0)$ $MS^{(1)}$ [d]	$\tilde{W}^{(2)} \propto \{r^4Y_{00}\}\$ $\tilde{V}^{(2)} \propto \Delta^2v(0)$ MS ⁽²⁾	
O(2)	$\left\{ egin{aligned} Q \propto r^2 Y_{20} \\ V_{ij} \propto \partial_{ij} v(0) \end{aligned} \right\} \mathrm{QI} [\mathrm{b}]$	$\tilde{Q}^{(1)} \propto \{r^4 Y_{20}\}\$ $\tilde{V}^{(1)}_{ij} \propto \partial_{ij} \Delta v(0)$ $QS^{(1)}[e]$	A(2) - (-6V)	
0(4)	$\left. egin{aligned} H \propto r^4 Y_{40} \\ V_{ijkl} \propto \partial_{ijkl} v(0) \end{aligned} \right\} \; \mathrm{HDI} \; [\mathrm{c}] \; . \end{aligned}$	$\hat{H}^{(1)} \propto \{r^6Y_{40}\}$ $\hat{V}^{(1)}_{ijkl} \propto \partial_{ijkl}\Delta v(0)$ HDS ⁽¹⁾	$\tilde{H}^{(2)} \propto \{r^8Y_{40}\}$ $\tilde{V}^{(2)}_{ijkl} \propto \partial_{ijkl}\Delta^2v(0)$ HDS ⁽²⁾	
	***		***	
	0 th order contri	ibution for a point nucleu	s	

order	multipole moment / field	first order quasi moment / quasi field	second order quasi moment / quasi field	***
O(0)	$\begin{pmatrix} M \propto r^0 Y_{00} \\ V \propto v(0) \end{pmatrix}$ MI [a]	$\tilde{W}^{(1)} \propto \{r^2 Y_{00}\}\$ $\tilde{V}^{(1)} \propto \Delta v(0)$ $MS^{(1)}$ [d]	$M^{(2)} \propto \{r^4Y_{00}\}$ $V^{(2)} \propto \Delta^2 v(0)$ MS ⁽	2)
O(2)	$\left. egin{aligned} Q \propto r^2 Y_{20} \\ V_{ij} \propto \partial_{ij} v(0) \end{aligned} \right\} \mathrm{QI} [\mathrm{b}]$	$V_{ij}^{(1)} \propto \{r^*Y_{20}\}$ $V_{ij}^{(1)} \propto \partial_{ij}\Delta v(0)$ QS ⁽¹⁾ [e]	$\left. \begin{array}{l} \bar{Q}^{(2)} \propto \{r^6 Y_{20}\} \\ \bar{V}^{(2)}_{ij} \propto \partial_{ij} \Delta^2 v(0) \end{array} \right\} \mathrm{QS}$	(2)
0(4)	$\left. egin{aligned} H \propto r^4 Y_{40} \\ V_{ijkl} \propto \partial_{ijkl} v(0) \end{aligned} ight. ight. \left. ight. ight. ext{HDI [c]}$	$\hat{H}^{(1)} \propto \{r^{6}Y_{40}\}$ $\hat{V}^{(1)}_{ijkl} \propto \partial_{ijkl}\Delta v(0)$ HDS ⁽¹⁾	$\left. \begin{array}{l} \hat{H}^{(2)} \propto \{r^8 Y_{40}\} \\ \hat{V}^{(2)}_{ijkl} \propto \partial_{ijkl} \Delta^2 v(0) \end{array} \right\}$ HD)S ⁽²⁾

		ection to 0 th order for over	rlap (or 'extended nucl	eus')

overlap in the current-current interaction

Translate this to the leading term of the current-current interaction

	dipole contribution	first order correction due to overlap
O(1)	$-\hat{m{\mu}}_I\cdot\hat{m{B}}(m{0})$	
	• orbital • spin	• Fermi contact contribution $-\frac{2\mu_B\mu_0}{3}\left(\psi_{e,\uparrow}(0) ^2- \psi_{e,\downarrow}(0) ^2\right)$

→ does not vanish if nucleus becomes a point

• field related to Bohr-Weisskopf effect

overlap ⇔ extended nucleus !

'correction' is often dominant w.r.t. regular dipole term (see bcc-Fe)

Bohr-Weisskopf effect

Two different isotopes of the same element have a different nuclear moment. The spatial distribution of this moment over the nuclear volume need not to be homogeneous:

$$E_{mag} = -\int_{nuc} \boldsymbol{B}_{hf} \cdot d\boldsymbol{\mu}_{I}$$

$$\frac{E_1}{E_2} = \frac{\boldsymbol{\mu}_{I1}}{\boldsymbol{\mu}_{I2}}$$

Bring both nuclei in the same hyperfine field. This varies over the nuclear volume and interacts with the (differently) distributed magnetic moments.
 B does not get out the integral, which leads to: