perturbation theory

www. hyperfinecourse .org

recapitulation: perturbation theory

Assuming we know eigenvalues and eigenfunctions of a hamiltonian H₀:

$$H_0 | n_0 > = E_n^0 | n_0 >$$

what are the eigenvalues and eigenfunctions of a hamiltonian H that has the form

$$H = H_0 + \epsilon H_1 + \epsilon^2 H_2 + \dots$$

where ϵ is a small number (<< 1) ?

(Note: H₂ can be zero).

perturbation: constant electric field
electric field :
$$\vec{E}(x) = K\vec{e}_x$$

potential energy: $V(x) = -qKx$
perturbing operator: $\hat{H}_1 = -qK\hat{x}$
 $\hat{H} = \hat{H}_0 + \hat{H}_1$
 $= -\frac{\hbar^2}{2m}\frac{d^2}{dx^2} - qKx$
form of hamiltonian $\propto \frac{d^2}{dx^2} + \frac{2qmK}{\hbar^2}x$
small if the electric field is not too strong

recapitulation: perturbation theory

Application to example 1:

$$\Delta E_N^1 = \langle \Psi_{0,N} | \hat{H}_1 | \Psi_{0,N} \rangle$$

= $-\frac{2qK}{a} \int x \sin^2 \frac{N\pi x}{a} dx$
= $-\frac{qKa}{2}$

Downward shift of all levels, independent of N.

Exercise: find the wave functions and probability density.

recapitulation: perturbation theory

Solution up to first order in $\boldsymbol{\epsilon}$:

2) I-fold degenerate case

For eigenvalues that are degenerate (i.e. H_1 does lift a degeneracy), the new eigenvalues and eigenfunctions are found by this procedure:

- \clubsuit orthonormalize Find an orthonormal basis $|\,n_0^i\!>\!{\rm for}$ the I-dimensional subspace
- ➔ diagonalize The I energy corrections are found as the I eigenvalues of this matrix:

$$\begin{bmatrix} < n_0^1 | \epsilon H_1 | n_0^1 > < n_0^1 | \epsilon H_1 | n_0^2 > \cdots < n_0^1 | \epsilon H_1 | n_0^\ell > \\ < n_0^2 | \epsilon H_1 | n_0^1 > < n_0^2 | \epsilon H_1 | n_0^2 > \cdots < n_0^2 | \epsilon H_1 | n_0^\ell > \\ \vdots & \vdots & \ddots & \vdots \\ < n_0^\ell | \epsilon H_1 | n_0^1 > < n_0^\ell | \epsilon H_1 | n_0^2 > \cdots < n_0^\ell | \epsilon H_1 | n_0^\ell > \end{bmatrix}$$

The new eigenstates are the eigenvectors of this matrix.

$$\begin{array}{l} \textbf{recapitulation: perturbation theory} \\ \text{Example 2: free electron under an applied magnetic field} \\ \text{without field, up and down spin are degenerate: } \Psi_{\uparrow} \quad \Psi_{\downarrow} \\ \hat{H}_{0} &= \hat{\Pi} \\ \hat{H}_{1} &= -\hat{\mu} \cdot \vec{B} \\ &= -\left(\frac{-2\mu_{B}\hat{S}}{\hbar}\right) \cdot \vec{B} \\ \left[\begin{array}{c} \langle \Psi_{\downarrow} | \, \hat{S}_{z} \, | \Psi_{\uparrow} \rangle & \langle \Psi_{\downarrow} | \, \hat{S}_{z} \, | \Psi_{\downarrow} \rangle \\ \langle \Psi_{\downarrow} | \, \hat{S}_{z} \, | \Psi_{\uparrow} \rangle & \langle \Psi_{\downarrow} | \, \hat{S}_{z} \, | \Psi_{\downarrow} \rangle \end{array} \right] = \left[\begin{array}{c} \frac{1}{2} \, \hbar & 0 \\ 0 & -\frac{1}{2} \, \hbar \end{array} \right] \\ \text{This is already diagonal.} \end{array}$$

recapitulation: perturbation theory

A derivation and more examples can be found at

http://en.wikipedia.org/wiki/Perturbation_theory_(quantum_mechanics) (section 2.1, 2.2 and 5)