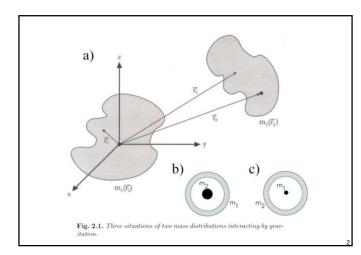
gravitational analogue

www. hyperfinecourse .org

1



2

Gravitational potential energy of this system =

- $\boldsymbol{\cdot}$ gravitational potential energy of m_2 in the field of m_1 or
- \cdot gravitational potential energy of m_1 in the field of m_2

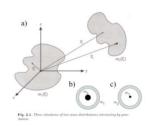
$$E_{pot} = \int_{1}^{1} \rho_1(r_1) V_2(r_1) dr_1$$

Potential field of m_2 at position r_1 :

$$V_2(\mathbf{r}_1) = -G \int_2 \frac{\rho_2(\mathbf{r}_2)}{|\mathbf{r}_2 - \mathbf{r}_1|} d\mathbf{r}_2$$

And hence

$$E_{pot} = -\,G \int_1 \int_2 \frac{\rho_1({\bm r}_1) \rho_2({\bm r}_2)}{|{\bm r}_2 - {\bm r}_1|} \, d{\bm r}_1 \, d{\bm r}_2$$



3

5

How to treat the double integral? → Laplace expansion

$$\frac{1}{|r_2-r_1|} = 4\pi \sum_{n,q} \frac{r_<^r}{r_>^{n+1}} \frac{1}{2n+1} Y_q^{n*}(\theta_1,\,\phi_1) Y_q^n(\theta_2,\,\phi_2)$$

$$r_{<} = \min \left(r_{1}, r_{2} \right)$$

$$r_{>} = \max \left(r_{1}, r_{2} \right)$$

$$E_{pot} = -4\pi\,G\,\int_1 \int_2 \rho_1(\boldsymbol{r}_1) \rho_2(\boldsymbol{r}_2) \left(\sum_{n,q} \frac{r_<^n}{r_>^{n+1}} \frac{1}{2n+1} \, Y_q^{n*}(\theta_1,\,\phi_1) Y_q^n(\theta_2,\,\phi_2) \right) d\boldsymbol{r}_1 \, d\boldsymbol{r}_2$$

4

Assumption: the mass distributions are such that any r_1 is smaller than any r_2 a)

Imagine an example where this is not fulfilled...

 $\begin{aligned} & \textit{Condition: consider only cases for which any } \mathbf{r}_1 \text{ is smaller than any } \mathbf{r}_2 \\ & \textit{Consequence:} \quad \mathbf{r}_4 = \mathbf{r}_1 \\ & \mathbf{r}_2 = \mathbf{r}_2 \end{aligned}$ $E_{pot} = -4\pi G \int_1 \int_2 \rho_1(\mathbf{r}_1) \rho_2(\mathbf{r}_2) \left(\sum_{n,q} \frac{r_q^n}{r_p^{n+1}} \frac{1}{2n+1} Y_q^{n*}(\theta_1,\phi_1) Y_q^n(\theta_2,\phi_2) \right) d\mathbf{r}_1 d\mathbf{r}_2$ $\bigcup_{E_{pot}} = \sum_{n,q} Q_q^{n*} V_q^n$ $Q_q^n = \sqrt{\frac{4\pi}{2n+1}} \int_1 \rho_1(\mathbf{r}_1) r_1^n Y_q^n(\theta_1,\phi_1) d\mathbf{r}_1$ $V_q^n = -G \sqrt{\frac{4\pi}{2n+1}} \int_2 \frac{\rho_2(\mathbf{r}_2)}{r_2^{n+1}} Y_q^n(\theta_2,\phi_2) d\mathbf{r}_2 \end{aligned}$

6

Discussion:

monopole term

 $\begin{array}{ll} \mathbf{t} & Q_0^0 = m_1 \\ & V_0^0 = -G \int \frac{\rho_2(\mathbf{r}_2)}{|\mathbf{r}_2|} \, d\mathbf{r}_2 \\ & E_{pot}^{(0)} = Q_0^{0*} V_0^0 \end{array}$ monopole moment scalar monopole field

dot product → scalar monopole energy

Discussion:

dipole term

 $Q_q^1 = \sqrt{\frac{4\pi}{3}} \int_1 \rho_1(r_1) r_1 Y_q^1(\theta_1, \phi_1) dr_1$ vector dipole moment dipole field $V_q^1 = -G\sqrt{\frac{4\pi}{3}}\int_2\frac{\rho_2(r_2)}{r_2^2}Y_q^1(\theta_2,\,\phi_2)\,dr_2$ dipole energy $E_{pot}^{(1)} = \sum_{q=-1,0,1}Q_q^{1*}V_q^1$

dot product → scalar

7

8

interpretation of the dipole moment of m₁:
$$Q_x = \frac{\sqrt{2}}{2} \left(Q_{-1}^1 - Q_{+1}^1\right)$$

$$= \int_1 \rho_1(r_1) r_1 \sin\theta \cos\phi \, dr_1$$

$$= \int_1 \rho_1(r_1) x_1 \, dr_1$$

$$Q_y = \int_1 \rho_1(r_1) y_1 \, dr_1$$
 position vector of center of mass of m₁
$$Q_z = \int_1 \rho_1(r_1) z_1 \, dr_1$$

interpretation of the dipole field by m₂: $\begin{aligned} V_x &= -G \int_2 \frac{\rho_2(r_2)}{|r_2|^3} \, x_2 \, dr_2 \\ V_y &= -G \int_2 \frac{\rho_2(r_2)}{|r_2|^3} \, y_2 \, dr_2 \\ V_z &= -G \int_2 \frac{\rho_2(r_2)}{|r_2|^3} \, z_2 \, dr_2 \end{aligned}$

opposite of the gravitational field by m₂ at the origin

Discussion:

quadrupole term

quadrupole moment $Q_q^2 = \sqrt{\frac{4\pi}{5}} \int_1 \rho_1(r_1) \, r_1^2 \, Y_q^2(\theta_1,\,\phi_1) \, dr_1 \qquad \text{tensor}$ quadrupole field $V_q^2 = -G\sqrt{\frac{4\pi}{5}}\int \frac{\rho_2(r_2)}{r_2^3}\,Y_q^2(\theta_2,\,\phi_2)\,dr_2 \quad \text{tensor}$ quadrupole energy $E_{pot}^{(2)} = \sum_{q=-2,\ldots,2}Q_q^2V_q^2 \qquad \qquad \text{dot product}$

dot product → scalar

9

10

quadrupole moment :

$${}_cQ^{(2)}_{sh} = \int_1 \rho_1(r_1) \begin{bmatrix} 3x_1^2 - r_1^2 & 3x_1y_1 & 3x_1z_1 \\ 3x_1y_1 & 3y_1^2 - r_1^2 & 3y_1z_1 \\ 3x_1z_1 & 3y_1z_1 & 3z_1^2 - r_1^2 \end{bmatrix} dr_1 \qquad \begin{array}{c} \cdot \text{ symmetric} \\ \cdot \text{ trace-less (show)} \end{array}$$

Fig. 2.2. A spherical, prolate and oblate mass distribution (with respect

quadrupole field:

$${}_{c}V_{sh}^{(2)} = -G\int_{2}\frac{\rho_{2}(\boldsymbol{r}_{2})}{\left|\boldsymbol{r}_{2}\right|^{5}}\begin{bmatrix}3x_{2}^{2} - r_{2}^{2} & 3x_{2}y_{2} & 3x_{2}z_{2}\\3x_{2}y_{2} & 3y_{2}^{2} - r_{2}^{2} & 3y_{2}z_{2}\\3x_{2}z_{2} & 3y_{2}z_{2} & 3z_{2}^{2} - r_{2}^{2}\end{bmatrix}d\boldsymbol{r}_{2} \qquad \begin{array}{c} \bullet \text{ symmetric}\\ \bullet \text{ trace-less (show)} \end{array}$$

The meaning of this tensor is more clear when deriving it using a cartesian Taylor expansion:

→ (gravitational) field gradient tensor

 $\Delta V_2(\mathbf{0}) = \frac{\partial^2 V_2(\mathbf{0})}{\partial x^2} \, + \, \frac{\partial^2 V_2(\mathbf{0})}{\partial y^2} \, + \, \frac{\partial^2 V_2(\mathbf{0})}{\partial z^2} \, = \, 4\pi \, G \, \rho_2(\mathbf{0})$

Poisson equation

12 11

Taylor expansion of a scalar function defined on a vector domain:

$$f(\mathbf{r}) = \int \frac{g(\mathbf{r}_v)}{|\mathbf{r}_v - \mathbf{r}|} d\mathbf{r}_v \qquad (B.1)$$

The integral runs over that part of space where $g(r_v)$ is not zero, which might be a finite or infinite region. If g is a charge or mass distribution, f gives the electric or gravitational potential in a point r (apart from an appropriate factor). That point can be either inside or outside the non-zero region of g (Fig. B-1***). If it lies inside, the denominator in the integral becomes zero and we have to care about the convergence of the integral. The latter is determined by the properties of g. We assume that we know the value of f and of all its derivatives at the origin 0. What we want to know is the value of f at points r = (x, y, z) that are not far away from 0. This means we need a Taylor expansion of f(r) around 0. The general form of a Taylor expansion around 0 for a function with vectors as argument, is:

$$f(\mathbf{0} + \mathbf{r}) = \sum_{j=0}^{\infty} \left[\frac{1}{j!} (\mathbf{r} \cdot \nabla_{\mathbf{r}'})^j f(\mathbf{r}') \right]_{\mathbf{r}'=\mathbf{0}}$$
 (B.2)

dot product between scalars, vectors, tensors,...

·monopole and dipole terms from Taylor expansion are identical to the Laplace expansion ·difference in the quadrupole term: $\frac{\partial^2 V_2(\vec{0})}{\partial x_2^2} \quad \frac{\partial^2 V_2(\vec{0})}{\partial y_2 \partial x_2} \quad \frac{\partial^2 V_2(\vec{0})}{\partial z_2 \partial x_2}$ $E_{pot}^{(2)} = \frac{1}{2} \begin{bmatrix} \int \rho_1(r_1) x_1^2 dr_1 & \int \rho_1(r_1) x_1 y_1 \, dr_1 & \int \rho_1(r_1) x_1 z_1 \, dr_1 \\ \int \rho_1(r_1) y_1 x_1 \, dr_1 & \int \rho_1(r_1) y_1^2 \, dr_1 & \int \rho_1(r_1) y_1 z_1 \, dr_1 \\ \int \rho_1(r_1) z_1 x_1 \, dr_1 & \int \rho_1(r_1) z_1 y_1 \, dr_1 & \int \rho_1(r_1) z_1^2 \, dr_1 \end{bmatrix}$ ${}_cK^{(2)} = \frac{1}{3} \begin{bmatrix} \{3x_1^2\} - \{r_1^2\} & \{3x_1y_1\} & \{3x_1z_1\} \\ \{3y_1x_1\} & \{3y_1^2\} - \{r_1^2\} & \{3y_1z_1\} \\ \{3z_1x_1\} & \{3z_1y_1\} & \{3z_1^2\} - \{r_1^2\} \end{bmatrix} \\ + \frac{1}{3} \begin{bmatrix} \{r_1^2\} & 0 & 0 \\ 0 & \{r_1^2\} & 0 \\ 0 & 0 & \{r_1^2\} \end{bmatrix}$

13

14

$$E_{pot}^{(2)} = \frac{1}{6} \begin{bmatrix} \left\{ 3x_1^2 \right\} - \left\{ r_1^2 \right\} \\ \left\{ 3y_1x_1 \right\} \\ \left\{ 3y_1^2 \right\} - \left\{ r_1^2 \right\} \\ \left\{ 3y_1z_1 \right\} \\ \left\{ 3z_1y_1 \right\} \\ \left\{ 3z_1y_1 \right\} \\ \left\{ 3z_1^2 \right\} - \left\{ r_1^2 \right\} \end{bmatrix} \\ \begin{bmatrix} \frac{\partial^2 V_2(0)}{\partial x_1^2} - \frac{\Delta V_2(0)}{3} & \frac{\partial^2 V_2(0)}{\partial y_1\partial x_1} & \frac{\partial^2 V_2(0)}{\partial z_1\partial x_1} \\ \frac{\partial^2 V_2(0)}{\partial x_1\partial y_1} & \frac{\partial^2 V_2(0)}{\partial y_1^2} - \frac{\Delta V_2(0)}{3} & \frac{\partial^2 V_2(0)}{\partial z_1\partial y_1} \\ \frac{\partial^2 V_2(0)}{\partial x_1\partial y_1} & \frac{\partial^2 F_2(0)}{\partial y_1\partial y_1} - \frac{\Delta V_2(0)}{3} & \frac{\partial^2 V_2(0)}{\partial z_1\partial y_1} \\ \frac{\partial^2 V_2(0)}{\partial x_1\partial y_1} & \frac{\partial^2 F_2(0)}{\partial y_1\partial y_1} - \frac{\Delta V_2(0)}{\partial y_1\partial y_1} - \frac{\Delta V_2(0)}{3} \end{bmatrix} \\ \frac{1}{6} \begin{bmatrix} \left\{ r_1^2 \right\} & 0 & 0 \\ 0 & \left\{ r_1^2 \right\} & 0 \\ 0 & 0 & \left\{ r_1^2 \right\} \end{bmatrix} \cdot \begin{bmatrix} \frac{\Delta V_2(0)}{3} & \frac{\partial V_2(0)}{3} & 0 \\ 0 & \frac{\Delta V_2(0)}{3} & 0 \\ 0 & 0 & \frac{\Delta V_2(0)}{3} \end{bmatrix} \\ \\ \text{monopole shift} : & \frac{1}{6} c Q_{sz}^{(0)} \cdot c V_{sz}^{(0)} = \frac{1}{6} \Delta V_2(0) \left\langle r_1^2 \right\rangle \\ & = \frac{4\pi G}{6} \left(\rho_2(0) \right) \int \rho_1(r_1) r_1^2 \, dr_1 \\ \\ \text{only if } \mathbf{m}_2 \text{ extends up to the origin !} \\ \\ \text{(i.e. impossible if always } r_1 < \mathbf{r}_2 \rightarrow \text{this was a more general derivation)} \end{cases}$$

no overlap	monopole term	dipole term	quadrupole term
m ₁	mass of m ₁	position vector center of mass of m ₁	quadrupole moment of m ₁
m ₂	potential by m ₂ at origin	opposite of field by m ₂ at origin	gradient of gravitional field by m ₂ at origin
with overlap			
	correction depending on the size of m ₁ and the mass contribution of m ₂ at the origin		16

15

16